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1 Introduction

LaSalle’s invariance principle is one of the most important
theoretical tools to analyze the convergence and asymptotic
stability of autonomous ordinary differential equations and
difference equations ([12], [11]). Delay differential inclu-
sions can describe a wide variety of dynamic systems af-
fected by delays and can also be used to analyze stability
and robustness of delay differential equations with discon-
tinuous right-hand sides [17]. This paper is aimed at devel-
oping the classical invariance principle [12], [10] for delay
differential inclusions.
Lyapunov’s second theorem is the most powerful weapon
to analyze the stability of general nonlinear systems ([11]).
It demands that the derivative of a Lyapunov function is
nonzero beyond the origin. However, such a strict Lya-
punov function is not easy to construct and a weaker Lya-
punov function may be obtained relatively easily, which
implies that the derivative of a Lyapunov function can be
zero beyond the origin. LaSalle’s invariance principle is a
sharp tool to analyze the convergence and asymptotic sta-
bility of autonomous systems with a weak Lyapunov func-
tion. This result has many important extensions, such as
[10, 14, 15, 20, 21, 1]. More specifically, LaSalle’s invari-
ance principle is generalized to time-varying differential
equations in [1] by introducing the concept of limit equa-
tions. Such an invariance principle concludes that the 𝜔-
limit set of a solution of time-varying system is an invari-
ant set of its limit equation. The author of [20] extends
the integral invariance principle to differential inclusions.
In [14], LaSalle’s invariance principle is extended to im-
pulsive switched systems that admit one jump at a jumping
instant. For differential equations with discontinuous right-
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hand side, LaSalle’s invariance principle is also developed
under Filippov solutions in [21].
Time delays are often inevitable in engineering and have at-
tracted a lot of attention [18], [5], [23], [22]. The author of
[10] extends the LaSalle’s invariance principle to functional
differential equations. It is asserted in [10] that any trajec-
tory approaches the largest invariant subset of a set where
the derivative of a Lyapunov functional along the solution
starting from any initial function belonging to this set is
zero. On the other hand, it has been shown that delay dif-
ferential inclusions can describe a wide variety of dynamic
systems affected by delays which are often inevitable in
practical applications ([9], [6]). However, stability crite-
ria are still not well developed for such a class of widely
used systems. Some stability theorems for delay differen-
tial inclusions have been developed in [17] and [24] where
[17] admits a more general functional. Only invariantly
differentiable functional is used in [24] and the results in
[24] cannot be applied to nonautonomous delay differen-
tial inclusions with only weak Lyapunov functional. The
key reason why the results in [24] do not apply to time-
varying delay differential inclusions is that the 𝜔-limit set
of a solution of time-varying systems is no longer an in-
variant set. Since the general invariance principles are very
important in stability analysis of delayed systems while re-
main unsolved, this motivates the research of this paper.
The contribution of the paper consists of two respects. The
first one is that the classical LaSalle’s invariance princi-
ple is established for autonomous delay differential inclu-
sions by general locally Lipschitz functionals. To estab-
lish such an invariance principle, the weakly invariant prop-
erty of the 𝜔-limit set of a precompact solution for an au-
tonomous delay differential inclusion is given. The intro-
duced challenge is that the composite function of a locally
Lipschitz functional and a locally absolutely continuous
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function may be not absolutely continuous. Besides, it is
not trivial to establish the invariance principle by a locally
Lipschitz functional, which does not depend on specific so-
lutions. To overcome these obstacles, we adopt a lemma
related to the properties of the locally Lipschitz functional
such that the invariance principle can be formulated inde-
pendent of specific solutions. As is known, the classical
LaSalle’s invariance principle can not be applied to nonau-
tonomous systems. The second contribution in this paper
is that the concept of limit delay differential inclusions is
proposed for the first time. With this new concept in time-
varying delay differential inclusions, the LaSalle’s invari-
ance principle is generalized to time-varying delay differ-
ential inclusions. The obtained results can be used to ana-
lyze the stability of nonlinear time-varying delayed system
such as adaptive control systems.
This paper is organized as follows. Notation and prelimi-
naries for delay differential inclusions are given in Section
2. The main results are presented in Section 3 and 4. A
case study is shown in Section 5. Section 6 draws the con-
clusions of this paper.

2 Preliminaries

The following notation is adopted in this paper.
ℝ
𝑛 is the 𝑛-dimensional Euclidean space. For 𝑥 ∈ ℝ

𝑛, ∣𝑥∣
denotes the 2-norm of 𝑥. 𝐶([−𝑟, 0];ℝ𝑛) denotes the collec-
tion of continuous functions from [−𝑟, 0] to ℝ𝑛, equipped
with the norm ∣∣𝜙∣∣𝑟 = max−𝑟≤𝑠≤0 ∣𝜙(𝑠)∣, where 𝜙 ∈
𝐶([−𝑟, 0];ℝ𝑛). Without ambiguity, 𝐶𝑟 will often denote
𝐶([−𝑟, 0];ℝ𝑛). For a continuous function 𝑥 defined at least
on [−𝑟 + 𝑡, 𝑡], let 𝐴(𝑡)𝑥 = 𝑥(𝑡 + 𝜃), 𝜃 ∈ [−𝑟, 0]. For
a set 𝑌 ⊂ 𝐶𝑟, 𝑌 denotes the closure of 𝑌 in the space
𝐶𝑟. A metric space ℝ≥0 × 𝐶𝑟 is endowed with the metric
∣∣𝑦 − 𝑧∣∣ = max{∣𝑡 − 𝑠∣, ∣∣𝜙 − 𝜑∣∣𝑟}, where 𝑦 = (𝑡, 𝜙)
and 𝑧 = (𝑠, 𝜑) belong to ℝ≥0 × 𝐶𝑟. A set-valued func-
tional ℱ : ℝ≥0 × 𝐶𝑟 ⇉ ℝ

𝑛 is upper semicontinuous on
ℝ≥0 × 𝐷 ⊆ ℝ≥0 × 𝐶𝑟 if, given 𝑦 ∈ ℝ≥0 × 𝐷, for each
𝜖 > 0 there exists 𝛿 > 0 such that, for all 𝑧 ∈ ℝ≥0 × 𝐷
satisfying ∣∣𝑧−𝑦∣∣ < 𝛿, we haveℱ(𝑧) ⊆ ℱ(𝑦)+𝜖𝐵, where
𝐵 is the unit open ball in ℝ𝑛.
Consider the following autonomous delay differential in-
clusions

�̇� ∈ ℱ(𝐴(𝑡)𝑥) (1)

where 𝑥 ∈ ℝ
𝑛 is the state. 𝐷 ⊂ 𝐶𝑟 is an open set con-

taining the origin. ℱ : 𝐷 ⇉ ℝ
𝑛 is a set-valued functional

satisfying the basic assumptions: it is upper semicontinu-
ous and ℱ(𝜙) is nonempty, compact and convex for each
𝜙 ∈ 𝐷. Throughout this paper, 0 ∈ ℱ(0) and the set-
valued functional ℱ maps bounded sets of𝐷 into bounded
sets of ℝ𝑛. For simplicity, the delay differential inclusions
(1) will be denoted by 𝒟ℐ.
Let us review some basic facts about 𝒟ℐ.

Definition 1 [7] A continuous function 𝑥 : [−𝑟, 𝑇 ) → ℝ
𝑛

with 0 < 𝑇 ≤ ∞ is said to be a solution of𝒟ℐ if it satisfies
the following conditions:
(1) it is absolutely continuous on each compact subset of
[0, 𝑇 );

(2) 𝐴(𝑡)𝑥 ∈ 𝐷 for all 𝑡 ∈ [0, 𝑇 );
(3) it satisfies 𝒟ℐ almost everywhere on [0, 𝑇 ).

On the existence and continuation of solutions of 𝒟ℐ, de-
tails can be found in [8], [17].
Given a solution 𝑥 of𝒟ℐ,𝐴(𝑡)𝑥 is the trajectory of 𝑥 in the
space𝐶𝑟. The 𝜔-limit set 𝜔(𝑥) of𝐴(𝑡)𝑥 is a set of all func-
tions 𝜑 ∈ 𝐶𝑟 for which there exists a sequence 𝐴(𝑡𝑛)𝑥,
with 𝑡𝑛 → ∞ as 𝑛 → ∞, such that lim𝑛→∞𝐴(𝑡𝑛)𝑥 = 𝜑.
A set 𝐻 ⊂ 𝐷 is called a weakly invariant set of 𝒟ℐ if for
any 𝜙 ∈ 𝐻 , there exists a continuous function 𝑥(𝑡) defined
on (−∞,∞) satisfying 𝐴(𝑡)𝑥 ∈ 𝐻 for all 𝑡 ∈ (−∞,∞)
and 𝐴(0)𝑥 = 𝜙, such that for any 𝜎 ∈ ℝ, the func-
tion 𝑥∗ defined on [0,∞) with 𝐴(0)𝑥∗ = 𝐴(𝜎)𝑥 and
𝑥∗(𝑡) = 𝑥(𝑡 + 𝜎) for all 𝑡 ≥ 0 is a solution of 𝒟ℐ. A
solution 𝑥(𝑡) of 𝒟ℐ is said to be precompact if it is defined
on [−𝑟,∞) and satisfies that the set {𝐴(𝑡)𝑥 : 𝑡 ∈ [0,∞)}
is compact and {𝐴(𝑡)𝑥 : 𝑡 ∈ [0,∞)} ⊂ 𝐷.
Given a continuous function 𝑤 : [𝑡0, 𝑏) → ℝ, 𝐷+𝑤(𝑡) =

lim sup𝑠→0+
𝑤(𝑡+𝑠)−𝑤(𝑡)

𝑠 .
Given a continuous functional 𝑉 defined on 𝐶𝑟, the upper
right-hand derivative of functional 𝑉 for some 𝜐 ∈ ℝ

𝑛 is
given, in the constructive way ([19], [3], [17]), as

𝐷+𝑉 (𝜙, 𝜐) = lim sup
ℎ→0+

𝑉 (𝜙∗ℎ)− 𝑉 (𝜙)

ℎ
, (2)

where

𝜙∗ℎ(𝑠) =

{
𝜙(𝑠 + ℎ), 𝑠 ∈ [−𝑟,−ℎ]

𝜙(0) + 𝜐(𝑠 + ℎ), 𝑠 ∈ (−ℎ, 0].
(3)

3 Main results

In this section, the classical invariance principle for func-
tional differential equations [10], [12] will be generalized
to delay differential inclusions.

Lemma 1 If 𝑥 is a precompact solution of 𝒟ℐ, then the
𝜔-limit set 𝜔(𝑥) of 𝐴(𝑡)𝑥 is nonempty, compact, connected
and weakly invariant. Moreover, 𝐴(𝑡)𝑥 approaches 𝜔(𝑥)
as 𝑡→∞.

The above lemma is a direct result of the properties of so-
lutions of 𝒟ℐ under the basic assumptions (see Theorem 3
in [16] and [24]).

Remark 1 Due to the nonuniqueness of solutions of 𝒟ℐ,
only weak invariant properties of the 𝜔-limit set 𝜔(𝑥) can
be asserted. This is the main difference from the invariant
properties of the 𝜔-limit set of solutions for autonomous
functional differential equations [10], [12].

A scalar functional 𝑉 defined on 𝜙 ∈ 𝐶𝑟 is said to be lo-
cally Lipschitz if, for any 𝜑 ∈ 𝐶𝑟, there exists ℓ𝜑 > 0 such
that the following inequality holds in some neighborhood
𝑁𝜑 of 𝜑:

∣𝑉 (𝜑1)− 𝑉 (𝜑2)∣ ≤ ℓ𝜑∣∣𝜑1 − 𝜑2∣∣𝑟, ∀𝜑1, 𝜑2 ∈ 𝑁𝜑. (4)
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Definition 2 [17] A continuous functional 𝑉 : 𝐷 → ℝ

is said to satisfy the basic properties if for any continuous
function 𝑥 : [𝑡0−𝑟, 𝑇 )→ ℝ

𝑛 that is locally absolutely con-
tinuous in [𝑡0, 𝑇 ) and satisfies𝐴(𝑡)𝑥 ∈ 𝐷 of all 𝑡 ∈ [𝑡0, 𝑇 ),
the composite function 𝑉 (𝐴(𝑡)𝑥) is locally absolutely con-
tinuous in [𝑡0, 𝑇 ).

Remark 2 A functional 𝑉 possessing the basic proper-
ties implies that the composite function 𝑉 (𝐴(𝑡)𝑥) is dif-
ferentiable almost everywhere on [0, 𝑇 ). A class of widely
used functional 𝑉 (𝜙) = 𝑅(𝜙(0)) +

∫ 0
−𝑟 𝑆(𝜙(𝑠))𝑑𝑠 with

𝑅 : ℝ𝑛 → ℝ≥0 locally Lipschitz continuous and 𝑆 : 𝐶𝑟 →
ℝ≥0 continuous satisfy the basic properties.

The following definition is a straitforward extension of
Lyapunov functional for delay differential equations (see
[12]) to delay differential inclusions.

Definition 3 Let𝐺 ⊂ 𝐷. 𝑉 is said to be a Lyapunov func-
tional of 𝒟ℐ on 𝐺 if (i) it is locally Lipschitz continuous
and possesses the basic properties on𝐺, (ii)𝐷+𝑉 (𝜙, 𝑓) ≤
0 for all 𝜙 ∈ 𝐺 and 𝑓 ∈ ℱ(𝜙).

Before giving one of our main theorems, denote𝐸𝑉 = {𝜙 :
𝜙 ∈ �̄�,∃𝑓 ∈ 𝐹 (𝜙) 𝑠.𝑡. 𝐷+𝑉 (𝜙, 𝑓) = 0} and let 𝑀𝑉 be
the largest weakly invariant subset of 𝒟ℐ in �̄�𝑉 .

Lemma 2 [17] Suppose that a functional 𝑉 : 𝐶𝑟 → ℝ

is locally Lipschitz in 𝜙. Then for any solution 𝑥 : [𝑡0 −
𝑟, 𝑇 )→ ℝ

𝑛 of 𝒟ℐ, it holds that

𝐷+𝑤(𝑡) = 𝐷+𝑉 (𝐴(𝑡)𝑥, �̇�(𝑡))

for almost all 𝑡 ∈ [𝑡0, 𝑇 ) where 𝑤(𝑡) is the composite func-
tion 𝑉 (𝐴(𝑡)𝑥).

Theorem 1 Let 𝑉 be a Lyapunov functional of 𝒟ℐ on 𝐺,
and let 𝑥(𝑡) be a solution of 𝒟ℐ that is precompact and
such that 𝐴(𝑡)𝑥 remains in 𝐺 for all 𝑡 ≥ 0. Then, for some
𝑐, 𝐴(𝑡)𝑥 approaches𝑀𝑉

∩
𝑉 −1(𝑐).

Proof of Theorem 1: From the properties of the functional
𝑉 , the composite function 𝑉 (𝐴(𝑡)𝑥) is locally absolutely
continuous and thus �̇� (𝐴(𝑡)𝑥) exists almost everywhere.
Lemma 2 yields

�̇� (𝐴(𝑡)𝑥) = 𝐷+𝑉 (𝐴(𝑡)𝑥)

= 𝐷+𝑉 (𝐴(𝑡)𝑥, �̇�) (5)

almost everywhere. As a consequence, it follows that, for
any 𝑡 ≥ 𝜏 ≥ 0,

𝑉 (𝐴(𝑡)𝑥) = 𝑉 (𝐴(𝜏)𝑥) +

∫ 𝑡

𝜏

�̇� (𝐴(𝑠)𝑥)𝑑𝑠

= 𝑉 (𝐴(𝜏)𝑥) +

∫ 𝑡

𝜏

𝐷+𝑉 (𝐴(𝑠)𝑥, �̇�)𝑑𝑠. (6)

Combining condition (ii) in Definition 3 and inequality (6)
results in

𝑉 (𝐴(𝑡)𝑥) ≤ 𝑉 (𝐴(𝜏)𝑥) (7)

for any 𝑡 ≥ 𝜏 ≥ 0. Therefore, 𝑉 (𝐴(𝑡)𝑥) is
monotonously decreasing. Since 𝑉 is continuous and
{𝐴(𝑡)𝑥 : 𝑡 ∈ [0,∞)} is a compact set contained in 𝐷 (this
results from the precompact property of 𝑥), 𝑉 (𝐴(𝑡)𝑥) is
bounded below. Therefore, lim𝑡→∞ 𝑉 (𝐴(𝑡)𝑥) = 𝑐 for
some constant 𝑐 ∈ ℝ. Let 𝜑 ∈ 𝜔(𝑥) be arbitrary, then
there exists a sequence 𝐴(𝑡𝑛)𝑥 with 𝑡𝑛 → ∞ as 𝑛 → ∞
such that lim𝑛→∞𝐴(𝑡𝑛)𝑥 = 𝜑. By the continuity of 𝑉 ,
one has

lim
𝑛→∞𝑉 (𝐴(𝑡𝑛)𝑥) = 𝑉 (𝜑) = 𝑐. (8)

This implies that 𝑉 is constant on 𝜔(𝑥). Let 𝑦(𝑡) be a so-
lution of 𝒟ℐ starting from 𝜑 and 𝐴(𝑡)𝑦 remains in 𝜔(𝑥).
Then 𝑑𝑉 (𝐴(𝑡)𝑦)𝑑𝑡 = 0 for all 𝑡 ≥ 0. From Lemma 2, we have

𝑑𝑉 (𝐴(𝑡)𝑦)

𝑑𝑡
= 𝐷+𝑉 (𝐴(𝑡)𝑦, �̇�) = 0 (9)

almost everywhere. As a result, there exists a sequence
{𝜏𝑖} with lim𝑖→∞ 𝜏𝑖 = 0 such that

𝐷+𝑉 (𝐴(𝜏𝑖)𝑦, �̇�) = 0 (10)

and lim𝑖→∞𝐴(𝜏𝑖)𝑦 = 𝜑. Thus, 𝜑 ∈ �̄�𝑉 and 𝐴(𝑡)𝑥 ap-
proaches𝑀𝑉

∩
𝑉 −1(𝑐) by Lemma 1.

Remark 3 Theorem 1 establishes the LaSalle’s invariance
principle for delay differential inclusions by locally Lips-
chitz functional. This theorem can be used to analyze the
convergence and asymptotic stability of discontinuous de-
layed systems.

Note that, in order to apply Theorem 1, we have to identify
the precompactness of a solution. Next, a mathematical
lemma is introduced similar to Lemma 4.8 in Chapter 3 of
[12].

Lemma 3 Let 𝑥 be a bounded solution of 𝒟ℐ defined on
[−𝑟,∞). If𝐴(𝑡)𝑥 has no positive limit points on the bound-
ary of 𝐷, then 𝑥(𝑡) is precompact.

Proof : From the definition of solutions 𝒟ℐ, one has, for
any 𝑡 > 0 and 𝑡 + 𝜃 > 0,

𝑥(𝑡 + 𝜃)− 𝑥(𝑡) =

∫ 𝑡+𝜃

𝑡

�̇�(𝑠)𝑑𝑠. (11)

By applying the properties of the set-valued functional ℱ
that maps bounded sets of 𝐷 into bounded sets ℝ𝑛, it fol-
lows from relation (11) that, for any 𝑡 ≥ 0 and 𝑡 + 𝜃 > 0,

∣𝑥(𝑡 + 𝜃)− 𝑥(𝑡)∣ ≤ 𝐾∣𝜃∣ (12)

for some constant 𝐾 > 0. This implies that 𝑥(𝑡)
is uniformly continuous on [−𝑟,∞) and that the family
{𝐴(𝑡)𝑥 : 𝑡 ∈ [0,∞)} of functions are equicontinuous.
Hence, {𝐴(𝑡)𝑥 : 𝑡 ∈ [0,∞)} is a nonempty compact set.
Since 𝐴(𝑡)𝑥 has no positive limit points on the bound-
ary of 𝐷, {𝐴(𝑡)𝑥 : 𝑡 ∈ [0,∞)} ⊂ 𝐷. Therefore, 𝑥(𝑡) is
precompact.□
Wewill give some stability corollaries for delay differential
inclusion. A lemma on the solution properties is presented
firstly as follows.
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Lemma 4 [17] Suppose that ℱ : 𝐷 ⇉ ℝ
𝑛 is bounded on

closed bounded set of𝐷 and satisfies basic assumptions on
𝐷. Then, for any initial values 𝜙 ∈ 𝐷, there exists a so-
lution of 𝒟ℐ satisfying 𝐴(0)𝑥 = 𝜙. If a solution 𝑥(𝑡, 𝜙)
is defined on a finite interval [−𝑟, 𝑇 ) and cannot be con-
tinued, then, for any bounded closed set 𝑈 in 𝐶𝑟, 𝑈 in 𝐷,
there is a 𝑡𝑈 such that 𝐴(𝑡)𝑥 /∈ 𝑈 for 𝑡𝑈 ≤ 𝑡 < 𝑇 .

Remark 4 If 𝐷 = 𝐶𝑟, any solution of 𝒟ℐ will diverge to
∞ in finite time or will be defined on [−𝑟,∞).

Corollary 1 Consider the delay differential inclusion 𝒟ℐ.
Suppose𝐷 = 𝐶𝑟 and there exists a functional 𝑉 : 𝐶𝑟 → ℝ

locally Lipschitz continuous and possessing the basic prop-
erties on 𝐶𝑟 such that
𝐷+𝑉 (𝜙, 𝑓) ≤ 0 for all 𝜙 ∈ 𝐶𝑟 and 𝑓 ∈ ℱ(𝜙).
If 𝐸𝑉 = {𝜙 : 𝜙 ∈ 𝐶𝑟, ∃𝑓 ∈ 𝐹 (𝜙) 𝑠.𝑡. 𝐷+𝑉 (𝜙, 𝑓) = 0}
and𝑀𝑉 is the largest weakly invariant subset of𝒟ℐ in �̄�𝑉 ,
then, for any bounded solution 𝑥 of 𝒟ℐ, 𝐴(𝑡)𝑥 approaches
𝑀𝑉 as 𝑡→∞.
Corollary 2 Consider the delay differential inclusion 𝒟ℐ.
Suppose that there exists a functional 𝑉 : 𝐷 → ℝ≥0 lo-
cally Lipschitz continuous and possessing the basic prop-
erties on 𝐷, 𝛼𝑖 ∈ 𝒦∞(𝑖 = 1, 2) such that
(1) 𝛼1(∣𝜙(0)∣) ≤ 𝑉 (𝜙) ≤ 𝛼2(∣∣𝜙∣∣𝑟) for all 𝜙 ∈ 𝐷;
(2) 𝐷+𝑉 (𝜙, 𝑓) ≤ 0 for all 𝜙 ∈ 𝐷 and 𝑓 ∈ ℱ(𝜙).
Then the solution 𝑥(𝑡) = 0 is stable. Moreover, if the
largest weakly invariant set in 𝐷 is the origin, then 𝑥(𝑡) =
0 is asymptotically stable.

Proof: Stability is a direct result in [17]. Attractivity fol-
lows from the invariance principle in Theorem 1.□
4 Generalization to general time-varying delay

differential inclusions

As can be seen from the analysis from Section 3, the key
point of the LaSalle’s invariance principle lies in the fact
that the 𝜔-limit set of a precompact solution of the au-
tonomous delay differential inclusions is an invariance set.
Obviously, this property does not hold for the time-varying
case. In the following, we will consider a more general in-
variance principle that can be applied to time-varying delay
differential inclusions.
Consider the following time-varying delay differential in-
clusion

�̇�(𝑡) ∈ ℱ(𝑡, 𝐴(𝑡)𝑥), (13)

where ℱ : ℝ≥0 ×𝐷 ⇉ ℝ
𝑛 is a set-valued functional that

is bounded on closed bounded subsets of 𝐷 and satisfies
the basic conditions (see [17]). Denote the collection of all
such set-valued functionals by𝑀 .
Since the 𝜔-limit set of 𝐴(𝑡)𝑥 for a solution 𝑥 of (13) is no
longer a weak invariant set of system (13), we will gener-
alize the idea of limit equations proposed by Artstein (see
[12],[1]) to overcome this obstacle.
Let 𝑋 ⊂ [0,∞) × 𝐶([−𝑟, 0];ℝ𝑛) and ℱ𝑖 : 𝑋 ⇉ ℝ

𝑛, 𝑖 =
1, 2, ⋅ ⋅ ⋅ ,∞, be a set-valued functional sequence defined
on 𝑋 . In the following, the concept of uniform conver-
gence for a set-valued functional sequence is introduced.

Definition 4 The sequence of set-valued functional ℱ𝑖 :
𝑋 ⇉ ℝ

𝑛, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,∞, converges uniformly to ℱ on
the set 𝑋 if, for every 𝜖 > 0 and 𝜌 > 0, there exists a
positive integer 𝑁 such that, for any 𝑖 ≥ 𝑁 ,

ℱ𝑖(𝑧)
∩

𝜌𝐵 ⊂ ℱ(𝑧) + 𝜖𝐵

ℱ(𝑧)
∩

𝜌𝐵 ⊂ ℱ𝑖(𝑧) + 𝜖𝐵

⎫⎬
⎭ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ 𝑋.

The translate by 𝑡 of the set-valued functionalℱ(𝑠, 𝜙) is the
functional ℱ 𝑡 defined by ℱ 𝑡(𝑠, 𝜙) = ℱ(𝑡+𝑠, 𝜙). Next, the
main result in this section is given as follows.

Theorem 2 Let 𝑥 : [𝑡0 − 𝑇,∞) be a precompact solu-
tion of system (13). If, for a sequence 𝑡𝑘 → ∞, 𝐴(𝑡𝑘) →
𝜑 ∈ 𝐷, and the set-valued functional sequence ℱ 𝑡𝑘 con-
verges uniformly to a set-valued functional 𝒢 ∈𝑀 on each
bounded closed subset of 𝐷, then there exists a solution
𝑦 : [𝑡0 − 𝑟,∞) with 𝐴(0)𝑦 = 𝜑 of �̇� ∈ 𝒢(𝑠,𝐴(𝑠)𝑥) such
that 𝐴(𝑡)𝑦 ∈ 𝜔(𝑥).

Sketch of proof : Let 𝑥𝑘 = 𝑥𝑘(𝑠) be defined by 𝑥𝑘(𝑠) =
𝑥(𝑡𝑘 + 𝑠). Then 𝑥𝑘 : [−𝑟,∞) with 𝐴(0)𝑥𝑘 = 𝐴(𝑡𝑘)𝑥
is a precompact solution of �̇� ∈ ℱ 𝑡𝑘(𝑠,𝐴(𝑠)𝑥). On each
compact interval [0, 𝑇 ], the family {𝑥𝑘(𝑠), 𝑠 ∈ [0, 𝑇 ]} are
equicontinuous since there exists 𝐵 > 0 such that

∣𝑥𝑘(𝑠)∣ ≤ 𝐵 (14)

for almost all 𝑠 ∈ [0, 𝑇 ]. Hence there exists a subsequence
𝑥𝑘𝑖 of the function sequence 𝑥𝑘 that converges uniformly to
some absolutely continuous function 𝑦 : [0, 𝑇 ] → ℝ

𝑛. Let
𝑦 : [−𝑟, 𝑇 ] satisfy 𝐴(0)𝑦 = 𝜑 and 𝑦(𝑠) = 𝑦(𝑠), 𝑠 ∈ [0, 𝑇 ].
The sequence of function 𝑥𝑘𝑖(𝑠) : 𝑠 ∈ [−𝑟, 𝑇 ] converges
to 𝑦 : [−𝑟, 𝑇 ] as 𝑡 → ∞ and 𝐴(𝑡)𝑦 ∈ {𝐴(𝑡)𝑥 : 𝑡 ≥ 𝑡0},
which belongs to a bounded closed set contained in 𝐷 by
precompactness of the solution 𝑥.
We now show that 𝑦 is a solution of �̇� ∈ 𝒢(𝑠,𝐴(𝑠)𝑥) in
brief. Since the sequence of function 𝑥𝑘𝑖 : [−𝑟, 𝑇 ] con-
verges uniformly to 𝑦 : [−𝑟, 𝑇 ], then 𝐴(𝑠)𝑥𝑘𝑖 converges
uniformly to 𝐴(𝑠)𝑦. Combining upper semicontinuity of
ℱ and Lemma 13 in [4], this assertion can be given by fol-
lowing similar arguments of the proof for Lemma 1 in [4]
(page 76).□
In fact, the above lemma states that the 𝜔-limit set 𝜔(𝑥)
of 𝐴(𝑠)𝑥 is a weakly invariant set of the limit differential
inclusion �̇� ∈ 𝒢(𝑠,𝐴(𝑠)𝑥). This result can be used to an-
alyze the stability of time-varying differential inclusions,
where only weak Lyapunov functionals can be found.
Consider the following time-varying delayed systems

�̇� = 𝑓(𝑡, 𝐴(𝑡)𝑥), (15)

where 𝑓 : ℝ≥0 × 𝐶𝑟 → ℝ
𝑛 is a continuous functional and

maps bounded sets of 𝐶𝑟 into bounded sets of ℝ𝑛.

Corollary 3 Let 𝑥 : [𝑡0 − 𝑇,∞) be a precompact solution
of system (15). If, for a sequence 𝑡𝑘 → ∞, 𝐴(𝑡𝑘) → 𝜑 ∈
𝐶𝑟, and the functional sequence 𝑓 𝑡𝑘 converges uniformly to
a functional 𝑔 ∈ 𝐶𝑟 on each bounded closed subset of 𝐶𝑟,
then there exists a solution 𝑦 : [𝑡0 − 𝑟,∞) with 𝐴(0)𝑦 = 𝜑
of �̇� = 𝑔(𝑠,𝐴(𝑠)𝑥) such that 𝐴(𝑡)𝑦 ∈ 𝜔(𝑥).
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Remark 5 The above results are a delay version of Art-
stein’s invariance principle. Stability theorems for time-
varying differential equations by applying the idea of limit
equations have attracted a lot of attention and been de-
veloped in the recent decade such as [13]. While stability
theorems for delay systems have received less attention and
not well developed by adopting the powerful idea initially
proposed in [1]. By the results in Theorem 2 and Corollary
3, we can also develop parallel stability theorems for delay
systems.

Example 1 Consider the following system

�̇�1 = 𝑒−2𝑡𝑥2(𝑡),

�̇�2 = −𝑒−2𝑡𝑥1(𝑡)− 2𝑥2(𝑡) + 𝑥2(𝑡− 𝜏). (16)

Choose a Lyapunov functional 𝑉 of the following form

𝑉 (𝜙) =
1

2
(𝜙21(0) + 𝜙22(0)) +

∫ 0

−𝜏
𝜙22(𝑠)𝑑𝑠. (17)

Taking the derivative of 𝑉 along the solution of system (16)
yields that

�̇� (𝐴(𝑡)𝑥) = −𝑥22(𝑡) + 𝑥2(𝑡)𝑥2(𝑡− 𝜏)− 𝑥22(𝑡− 𝜏).

Obviously �̇� (𝐴(𝑡)𝑥) ≤ 0. Let 𝑥 be any solution of system
(16). Then 𝑥 will be bounded, that is ∣𝑥(𝑡)∣ ≤ 𝐵 and𝐴(𝑡)𝑥
converges to the following set

{𝜙 ∈ 𝐶𝜏 : 𝜙2(0) = 𝜙2(−𝜏) = 0}. (18)

Since system (16) is a time-varying system, then LaSalle’s
invariance principle fails for this case. It is easy to confirm
that the limit delay differential equation is as follows

�̇�1 = 0,

�̇�2 = −2𝑥2(𝑡) + 𝑥2(𝑡− 𝜏). (19)

The largest invariant set in {𝜙 : 𝜙 ∈ 𝐶𝜏 , ∣∣𝜙∣∣𝜏 ≤ 𝐵} for
system (19) belongs to the following set

{𝜙 ∈ 𝐶𝜏 : ∃𝑐 ∈ ℝ 𝑠.𝑡. 𝜙1(𝑠) = 𝑐, ∀𝑠 ∈ [−𝜏, 0],

𝜙2(𝑠) = 0, ∀𝑠 ∈ [−𝜏, 0], ∣∣𝜙∣∣𝜏 ≤ 𝐵}. (20)

Therefore, the solution 𝑥 satisfies 𝐴(𝑡)𝑥 ∈ {𝜙 ∈ 𝐶𝜏 :
𝜙1(𝑠) = 𝑐,∀𝑠 ∈ [−𝜏, 0] for some 𝑐 ∈ ℝ, 𝜙2(𝑠) = 0, ∀𝑠 ∈
[−𝜏, 0], ∣∣𝜙∣∣𝜏 ≤ 𝐵}, which implies that 𝑥2(𝑡) converges to
zero and 𝑥1(𝑡) converges to a constant by Corollary 3. Fig-
ure 1 is a simulation for system (16). The state trajectories
in Figure 1 show the effectiveness of proposed theorems.

5 A case study

Consider the interconnected system of a smooth oscillator
with nonsmooth friction and uncertain coefficients [2] and
a first-order delayed system

�̇�1 = 𝑥2(𝑡),

�̇�2 ∈ ℱ2(𝑥1(𝑡), 𝑥2(𝑡)) + 𝑥3(𝑡),

�̇�3 = −2𝑥3(𝑡) + 𝑥3(𝑡− 𝜏)− 𝑥2(𝑡), (21)
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Figure 1: State trajectories for system (16) with initial val-
ues 𝜙1(𝑠) = 10, 𝜙2(𝑠) = −10, 𝑠 ∈ [−2, 0], 𝜏 = 2.

where ℱ2 is a set-valued mapping satisfying

ℱ2(𝑥1, 𝑥2) =⎧⎨
⎩

[−2𝑥1(𝑡)− 1,−𝑥1(𝑡)− 1] , 𝑥1 > 0, 𝑥2 > 0;

− 𝑥1(𝑡)− SGN(𝑥2(𝑡)), (𝑥1, 𝑥2)

∈ {(𝑥1, 𝑥2) : 𝑥1 ≤ 0, 𝑥2 > 0}
∪
{(𝑥1, 𝑥2) : 𝑥2 < 0};

[−2𝑥1(𝑡)− 1,−𝑥1(𝑡) + 1] , 𝑥2 = 0, 𝑥1 > 0;

[−𝑥1(𝑡)− 1,−𝑥1(𝑡) + 1] , 𝑥2 = 0, 𝑥1 < 0;

[−1, 1] , 𝑥1 = 0, 𝑥2 = 0

where SGN(𝑦) is defined as follows

SGN(𝑦) =

⎧⎨
⎩

1, 𝑦 > 0

− 1, 𝑦 < 0

[−1, 1], 𝑦 = 0.

(22)

It is known from [2] that ℱ2 is an upper semicontinuous
set-valued function and takes compact and convex values
in ℝ2. Hence, it is not hard to conclude that the set-valued
functional at the right-hand side of system (21) satisfies the
basic assumptions on 𝐶𝜏 and maps bounded sets of 𝐶𝜏 into
bounded sets of ℝ𝑛. Choose a functional

𝑉 (𝜙) =
1

2
𝜙21(0) +

1

2
𝜙22(0) +

1

2
𝜙23(0)

+

∫ 0

−𝜏
𝜙23(𝑠)𝑑𝑠 (23)

where 𝜙(𝑠) =
[

𝜙1(𝑠) 𝜙2(𝑠)
]𝑇 ∈ ℝ

2, 𝑠 ∈ [−𝜏, 0]. Ob-
viously, the functional 𝑉 satisfies the basic conditions and
is locally Lipschitz continuous. Moreover, it is clear that
𝛼1(∣𝜙(0)∣) ≤ 𝑉 (𝜙) ≤ 𝛼2(∣∣𝜙∣∣𝜏 ) for some 𝒦∞ functions
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𝛼1 and 𝛼2. Computing 𝐷+𝑉 (𝜙, 𝑓) yields

𝐷+𝑉 (𝜙, 𝑓) ∈⎧⎨
⎩

[−1, 0]𝜙1(0)𝜙2(0)− 𝜙2(0)− 𝜙23(0)

+ 𝜙3(0)𝜙3(−𝜏)− 𝜙23(−𝜏), 𝜙1(0) > 0, 𝜙2(0) > 0;

− ∣𝜙2(0)∣ − 𝜙23(0) + 𝜙3(0)𝜙3(−𝜏)− 𝜙23(−𝜏),

(𝜙1(0), 𝜙2(0)) ∈ 𝑆;

− 𝜙23(0) + 𝜙3(0)𝜙3(−𝜏)− 𝜙23(−𝜏), 𝜙2(0) = 0,

where 𝑆 = {(𝜙1(0), 𝜙2(0)) : 𝜙1(0) ≤ 0, 𝜙2(0) >
0}∪{(𝜙1(0), 𝜙2(0)) : 𝜙2(0) < 0}. Hence, we have

𝐷+𝑉 (𝜙, 𝑓) ≤ 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝜙 ∈ 𝐶𝑟 𝑎𝑛𝑑 𝑓 ∈ 𝐹 (𝜙). (24)

As a consequence, any solution of system (21) is bounded.
It is easy to confirm that

𝐸𝑉 = {𝜙 : 𝜙3(0) = 𝜙3(−𝜏) = 0, 𝜙2(0) = 0}. (25)

Now our object is to determine the largest invariant subset
in 𝐸𝑉 . Note that, in the set 𝐸𝑉 , one has

ℱ2(𝜙1(0), 𝜙2(0)) =⎧⎨
⎩

[−2𝜙1(0)− 1,−𝜙1(0) + 1] , 𝜙2(0) = 0, 𝜙1(0) > 0;

[−𝜙1(0)− 1,−𝜙1(0) + 1] , 𝜙2(0) = 0, 𝜙1(0) < 0;

[−1, 1] , 𝜙1(0) = 0, 𝜙2(0) = 0.

Any solution 𝑥(𝑡) of system (21) with an initial function
𝐴(0)𝑥 ∈ 𝐸𝑉 and 𝑥1(0) ⊂ ℝ∖[−1, 1] leaves 𝐸𝑉 . There-
fore, we have

𝑀𝑉 = {𝜙 : 𝜙3(𝑠) = 𝜙2(𝑠) = 0,

∃𝑐 ∈ [−1, 1] 𝑠.𝑡. 𝜙1(𝑠) = 𝑐, ∀𝑠 ∈ [−𝜏, 0]}. (26)

This implies that any solution of the system (21) is
bounded. Moreover, 𝑥2(𝑡) and 𝑥3(𝑡) approach zero and
𝑥1(𝑡) approaches a constant belonging to [−1, 1].

6 Conclusions

The LaSalle’s invariance principle was established for de-
lay differential inclusions by locally Lipschitz functional.
With the proposed invariance principle, some stability
corollaries were given. Besides, the concept of limit delay
differential inclusion has been proposed for the first time
such that the invariance principle was generalized to time-
varying delay differential inclusions. Some numerical ex-
amples were given to show the effectiveness of the newly
proposed results. For future work, the stability theorems of
delay differential inclusions will be explored by the newly
developed results.
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