

UNIVERSITY OF WATERLOO

Introduction to Scientific
Computing with MATLAB

SAW Training Course

MATLAB R2015a

R. William Lewis
Computing Consultant

Client Services – Information Systems & Technology
rwlewis@uwaterloo.ca

September 2015

ii

Table of Contents
1 MATLAB Basics .. 1

1.1 Obtaining software ... 1

1.2 Research License, Classroom license .. 1

1.3 Signing up for the Research License ... 1

1.4 Troubleshooting / Problems Running MATLAB .. 1

1.5 MATLAB Versions .. 1

1.6 Running MATLAB .. 1

2 Desktop Environment ... 2

2.1 Starting up MATLAB .. 2

2.1.1 Command Window ... 2

2.2 Command history .. 2

2.3 Current Folder ... 2

2.4 Workspace .. 3

2.5 Editor ... 3

2.6 Matrices, Arrays .. 3

2.6.1 Dimensions, contents .. 3

2.6.2 Ranges (vectors) .. 3

2.6.3 Manipulating Elements ... 4

2.6.4 Building up matrices.. 4

2.6.5 Matrix operations ... 4

2.6.6 Array operations ... 5

2.7 Assigning entries, rows, columns .. 5

2.8 Deleting entries, rows and columns ... 5

2.9 Functions ... 5

2.9.1 Function, operand, result .. 5

2.9.2 Dimensions of results .. 5

2.9.3 Example Statistical Summary Functions ... 6

2.10 Logical Indexing, Finding Elements ... 6

2.11 Exercises .. 7

2.11.1 Try the following commands .. 7

2.11.2 Define the following matrices ... 7

iii

2.11.3 Performing matrix and array operations .. 7

2.11.4 Apply functions to the matrices you have defined ... 8

2.11.5 Investigate the “find” command ... 8

3 Getting Help .. 9

3.1 From the Command Window.. 9

3.2 Function Browser .. 9

3.3 Help Button ... 10

3.4 Help Window... 10

3.5 Examples ... 11

4 MATLAB editor .. 12

4.1 Basics ... 12

4.1.1 Starting editor ... 12

4.1.2 Source navigation .. 12

4.1.3 Saving .. 12

4.1.4 Splitting the editor Window .. 12

4.2 Running your script ... 12

4.3 Function in an m-file ... 12

4.4 Debugging Commands .. 13

4.5 Development Methodology .. 13

4.5.1 Experiment at command line, put working commands into script 13

4.5.2 Identify parameters that will change and make then function arguments 13

5 Data Analysis Example .. 14

5.1 Importing data into MATLAB .. 14

5.2 Import Data interactively .. 14

5.3 Plot the Data ... 15

5.4 Import Data in a script .. 15

5.4.1 Exercise ... 16

5.4.2 Exercise: Write a MATLAB script main.m .. 16

6 Plotting .. 17

6.1 Creating Plots Interactively ... 17

6.2 Format the Plot ... 18

6.3 Create script file .. 20

iv

6.4 Exercise: Use this formatting in your script .. 21

7 Fitting a Model to the Sample Data .. 22

7.1 Polynomial Fitting ... 22

7.2 Use polyval to evaluate the fitting polynomial ... 22

7.3 Plot the fit ... 22

7.4 Use a Different Model ... 23

7.5 Performing the Non-Linear Fit .. 23

7.6 Exercise ... 23

8 Three-Dimensional Surface Plot ... 25

8.1 Function of two variables .. 25

8.2 Data grid .. 25

8.3 Evaluate Function.. 25

8.4 Plot with mesh .. 25

8.5 A Better Plot .. 26

8.6 Explore the Graph ... 27

9 Programming .. 28

9.1 MATLAB editor .. 28

9.2 Methodology (test commands, add to script) .. 28

9.3 Testing, debugging, spying as it’s running .. 31

9.4 Exercises .. 32

9.4.1 Fix the function so it can plot a parabola with complex roots.. 32

9.4.2 Handle parabolas with a double root ... 32

1 MATLAB Basics

1.1 Obtaining software
MATLAB is available on many student labs on campus, including NEXUS labs. For research use, faculty
and staff can purchase a license for themselves and for graduate students. You can also purchase the
student version directly from The MathWorks.

1.2 Research License, Classroom license
There are two site licenses for MATLAB on campus. The research license requires payment of a yearly
fee and is licensed per person. The classroom license cannot be used for research purposes, and is used
in instructional labs. If you are using MATLAB for a course, you should be using the classroom license. If
you are doing academic research, you should be using the research license, and are prohibited from
using the classroom license. Commercial use requires a separate license directly from The Mathworks.

1.3 Signing up for the Research License
University employees can buy an annual license for MATLAB by visiting the IST Webstore at
https://uwaterloo.ca/ist/webstore. Only University of Waterloo accounts (AFFs) are accepted for
payment. The account holder will need to login with their UW user ID and password, purchase licenses,
and then provide the user name for each person who needs access.

1.4 Troubleshooting / Problems Running MATLAB
If you run into any problems with MATLAB, please check the following:

1. Your login name must match your UW user ID (entered when your license was purchased).
2. You must have network access to run MATLAB.
3. Purchases do not take effect immediately.
4. Off-campus use requires a VPN connection, see http://vpn.uwaterloo.ca.

1.5 MATLAB Versions
There are two MATLAB releases each year. This course is based on R2015a released in March 2015. A
newer version R2015b has been released but is not yet supported on campus. MATLAB and each of its
toolboxes have individual version numbers as well. Users of our site licenses are entitled to use new
versions when they are released.

1.6 Running MATLAB
Installing MATLAB creates a program group in the Start Menu. On Windows 7 the easiest way to find it is
to type in “MATLAB” in the Start Menu. In the IST training labs and in NEXUS labs, you will find MATLAB
under Start | All Programs | Math & Statistical | MATLAB. Use the MATLAB shortcut, not the one that
says Activate MATLAB.

http://vpn.uwaterloo.ca/

2

2 Desktop Environment

2.1 Starting up MATLAB
MATLAB uses a three-column layout as the default.

2.1.1 Command Window
Your first interaction with MATLAB will be through the Command Window, which shows up in the
middle of the MATLAB window. This where you can type MATLAB commands and view the output of
these commands. In these notes, sample code will be in a box as shown below. For your first command
try “ver” which tells you which MATLAB features are installed.

ver

2.2 Command history
In the lower right corner of the MATLAB window is a section called “Command History” which will store
a record of the commands you give to MATLAB. You can double click on a command to repeat it, or
right-click on a command to copy it, create an M-file, and other options.

2.3 Current Folder
The left side of the MATLAB window shows the files in the current folder. In this interface you can look
in different folders for files. To change the working directory, double-click on the folder you want. You
can also use the double-arrow to the left of the folder name to move up the folder tree. The current
working directory is also shown in the toolbar.

3

MATLAB uses a path setting to determine where it looks for code to execute. This path includes the
toolboxes that come with MATLAB but might not necessarily include the places you save your files.
MATLAB always sees the current directory, and this section lets you see the current directory and
change it. Use the path command to see where MATLAB is looking for files.

path

2.4 Workspace
The right hand side of the interface shows an area called the Workspace. The Workspace shows all of
the variables that are currently defined in your MATLAB session.

You can view and change these variables as well as access an array editor from the Workspace tab by
double-clicking on an array.

2.5 Editor
Opening a MATLAB m-file gives you access to the MATLAB Editor, which is a text editor with some
special features to make it useful for working with MATLAB code.

2.6 Matrices, Arrays
The fundamental data structure in MATLAB is an array. This will be the main data structure that you
work with, and it will help to remember that even a variable with a single value is a 1x1 array in
MATLAB.

2.6.1 Dimensions, contents
Each array has dimensions, which are specified with the standards of “n by m” or “n x m” meaning “n
rows” by “m columns”. All elements of the array have the same data type.

You can specify a matrix by typing it between square braces [] with elements separated by spaces and
rows separated by semicolons.

A = [1 2 3; 4 5 6; 7 8 9]

2.6.2 Ranges (vectors)
To indicate a range in MATLAB, you use the colon. To specify the increment, use the syntax
start:increment:end. The increment, start and end can all be decimal numbers. Notice the final range
will end at 1.3, the largest number in the pattern specified.

1:4
1:3:20
.5:.2:1.4

4

2.6.3 Manipulating Elements
In MATLAB you can address an individual element of a matrix by using round brackets. For example, to
obtain the item in the 3rd row and 4th column of a matrix A, type A(3,4).The subscripts can be ranges. To
specify the last element in a row or column use “end”.

A = magic(5)
A(1:3, 2:4)
A(3:end, 4)

MATLAB also allows linear indexing by starting with the first column then moving through each column.

A = magic(5)
A(2)
A(20)

2.6.4 Building up matrices
To type in a matrix at the command line, separate columns with spaces and rows with semicolons:

A = [1 2 3; 4 5 6; 7 8 9]

Built-in matrices can be generated in a number of ways:

zeros(3)
zeros(3,4)
diag([1 4 6 10])

You can use built in matrices and ranges to build up a bigger matrix by separating columns by a space
and rows by a semicolon:

A = [zeros(3) ones(3)]
A = [magic(3); ones(3)]
A = [zeros(3) ones(3); magic(3) [1:3; 2:4; 3:5]]

2.6.5 Matrix operations
It is important to draw a difference between a matrix and an array. Arrays don’t have a strict
mathematical algebraic structure; they are simply numbers in a grid. Operations on arrays are done
element-wise.

Matrices are a special type of mathematical object that have their own algebra.

In MATLAB, standard mathematical symbols mean matrix operations.

A = magic(3)
B = eye(3)
A*B
B/A

5

2.6.6 Array operations
To make a MATLAB operation work element-wise, use the standard mathematical symbol with a period
before it. Note that addition is the same for matrices and arrays.

A .* B
B ./ A

When dimensions don’t match, MATLAB tries to perform scalar expansion. You can add a scalar to an
array to add the number to each element in the array.

A + 1
2*A

2.7 Assigning entries, rows, columns
You can assign a value to an entry of a matrix, or to an entire row or column using the colon syntax.

A = magic(3)
A(1) = 3
A(1, 2) = 3
A(1, :) = 2
A(:, 1) = 1

2.8 Deleting entries, rows and columns
The general syntax to delete parts of matrices is to assign the empty matrix to them.

A(1,:) = []
A(:, 1)= []

2.9 Functions
The commands just used to produce built-in matrices are examples of MATLAB functions.

2.9.1 Function, operand, result
Functions take a list of parameters and provide a result. MATLAB functions can take one or more
operands of various types, some functions can handle variable numbers of arguments (e.g. zeros(3) or
zeros(3,3)), some require a fixed number of arguments.

Functions can also return more than one value, and this is usually accomplished by assigning the result
of the function to a vector.

2.9.2 Dimensions of results
Most MATLAB functions can take matrix arguments and return results as a matrix. In general it is much
faster to operate on matrices in MATLAB than to operate on each element of the matrix in term. This is
called “vectorizing” your code.

6

2.9.3 Example Statistical Summary Functions
The following statistical functions work on each column of a matrix.

Function Name Function Description

sum Sum (total) of each column

mean Average (mean) of each column

max Maximum of each column

min Minimum of each column

median Median

mode Mode

std Standard deviation

var Variance

A useful trick to get one of these functions to operate on all elements of a matrix is to use linear
indexing. If you use the colon as a linear index, MATLAB converts the matrix to a vector. Combined with
a statistical function gives a compact way to operate on the entire matrix rather than on each column:

sum(A)
sum(A(:))

2.10 Logical Indexing, Finding Elements
MATLAB can easily provide you with all elements of a matrix that meet a specified condition.

A = magic(4)
A(A>10)

In this example, the result of A>10 is a matrix, consisting of zeroes and ones, indicating which elements
are greater than 10. The elements that meet the condition are identified by ones and those that do not
meet the condition are identified by zeroes.

>> A > 10

ans =

 1 0 0 1
 0 1 0 0
 0 0 0 1
 0 1 1 0

This matrix is then used as an index to the matrix A. Because it is the same size as A, it indicates whether
or not to display the particular element of the matrix.

7

If you need to know where these elements are located, use “find” which tells you the location of the
ones. With one return value, find uses linear indexing. With two return values, find gives lists of rows
and columns.

find(A>10)
[rows, cols] = find(A>10)

2.11 Exercises

2.11.1 Try the following commands

4 * ones(2)
diag([1:3])

2.11.2 Define the following matrices

𝐴𝐴 = �
1 0 1
1 2 3
0 1 2

�

𝐵𝐵 = �
−1 2
1 4
1 2

�

𝐶𝐶 =

⎣
⎢
⎢
⎢
⎢
⎡
1 1 1 1 0 0
1 1 1 0 1 0
1 1 1 0 0 1
3 0 0 4 4 4
0 2 0 4 4 4
0 0 1 4 4 4⎦

⎥
⎥
⎥
⎥
⎤

Note that C is made up of four matrices with special structures.

ones
eye
diag

2.11.3 Performing matrix and array operations
Try commands like:

A*B
C * [A; A]

To compute array operations you will need to produce same-sized matrices. Try:

B(3,3) = 10
A .* B

8

2.11.4 Apply functions to the matrices you have defined
For example,

sum(A)
max(C)

2.11.5 Investigate the “find” command
The find command can return row and column indices instead of linear indices by assigning its result to a
matrix of two variables:

[i, j] = find(A>1);

9

3 Getting Help

3.1 From the Command Window
After you type in the name of a MATLAB command followed by an open bracket, MATLAB will provide
syntax hints for the command.

You can then click on “More Help…” to access the help topic for find, in a minimal interface.

There will now be a link to the main “Help Browser” which is MATLAB’s full help interface. You can get
directly to the Help Browser through the Help menu as well.

3.2 Function Browser
If you don’t know the name of a function, you can press SHIFT+F1 at the command window to open a
simple keyword search interface. Type a word and MATLAB will give a list of matching commands.

10

3.3 Help Button
To access the MATLAB help system, use the Help button in the Home toolbar. There is also a drop down
menu that takes you to different places within the help browser.

3.4 Help Window
MATLAB Help takes you to the help window. Click on the name of one of the components or toolboxes
to open the help book for that topic.

Browsing through the topics is a good way to learn about MATLAB and to learn about new functions and
toolboxes.

A good way to learn more about MATLAB is to use the included Demos. You will see a section for Demos
within any of the books in the help system.

11

3.5 Examples
The help system also has lists of all of the examples used in the documentation. This can be another
good way to find useful information about MATLAB.

12

4 MATLAB editor

4.1 Basics
As you use MATLAB, you may find yourself repeating sequences of commands. Or you may develop a
way of analyzing certain data that you need to repeat as new data become available. In order to keep
an accurate record of MATLAB commands, and to make your sessions repeatable, you can put MATLAB
commands into M-files, which are simply text file with the extension “.m”. You can also use M-files to
define your own functions. MATLAB includes an editor which is tailored to editing MATLAB code.

4.1.1 Starting editor
The editor is opened by default when you open an M-file. You can create a new M-file by choosing the
option New Script from the toolbar.

4.1.2 Source navigation
The MATLAB editor shows line numbers on the left to help navigate within your code. You can include
comments in your M-file by starting a line with a % (percent) symbol.

4.1.3 Saving
Until you save your file, MATLAB will continue to run the old version on disk. The MATLAB editor tells
you there are changes by adding a star * to the file name. Make sure you save before you run your code.

4.1.4 Splitting the editor Window
In the View toolbar there are options to view several files at the same time. Tiling your windows is very
useful when working on larger projects with multiple related files.

4.2 Running your script
You can run an M-file by typing its name at command line in the Command Window. Or you can choose
the Run icon in the toolbar.

4.3 Function in an m-file
A script M-file executes a sequence of commands. Variables defined in your workspace are available to
the script, and variables defined by the script become part of the workspace. While this can be useful, it
can also cause problems if your scripts are used in different contexts. To formalize what information is
passed to and from your M-file, use MATLAB functions. This will make your M-file readable and
reusable. You can also write short special-purpose functions that are simpler to code and debug.

To define a function called myfunction which takes input a, b and c and returns output A:

function A=myfunction(a, b, c)
 … Commands go here
end

The lines within the function should assign the value to be returned into A. I recommend that you
terminate your function with the “end” command and indent the commands within your function for

13

greater clarity. The function must have the same name as the M-file. Note that when you create a new
function from the toolbar command, MATLAB provides you with a template function definition.

4.4 Debugging Commands
A simple way to check the commands in your M-file is to copy them to the Command Window and make
sure they work as expected. Select a command, right-click and choose “Evaluate selection”. You can
also use “Copy” and paste the command to the Command Window to edit it and try variations on it.

Since your commands will likely not work in isolation, you will often need to select all of the commands
that set up the environment. Execute the entire selection by right-clicking and “Evaluate selection”.

For more sophisticated debugging, use the commands in the Breakpoints menu. With a Breakpoint, you
specify a place in your code where MATLAB will stop when the code runs. You can then view the
Workspace and see what has been defined. It is also possible to set MATLAB to automatically launch the
debugger when it encounters an error (stop on error).

4.5 Development Methodology
In compiled languages like C, it is common to develop code by writing portions, then compiling and
running them to make sure they work. In MATLAB, you can develop your code interactively at the
command line to confirm syntax and proper operation before you put them in your M-file.

4.5.1 Experiment at command line, put working commands into script
Working at the command line lets you try variations on commands and experiment with the syntax of
commands you have not used before. By checking the output interactively you will find errors and
mistakes immediately and be able to put well-formed working commands into your M-file.

4.5.2 Identify parameters that will change and make then function arguments
To write good functions, you should identify which parameters may change and define them as
arguments to your function. In this way you can reuse the function simply by providing different
parameters. Your code will also be clearer and easier to maintain.

14

5 Data Analysis Example

5.1 Importing data into MATLAB
We will analyze some data to find parameters in specific models. The data are stored in an Excel
spreadsheet called “SampleData.xls”. The simplest way to import an Excel spreadsheet into MATLAB is
to double-click on the file in your Current Directory tab. We will then automate this process into a script.

5.2 Import Data interactively
1. Double-click on the file “SampleData.xls”.
2. You are prompted with import options:

3. This spreadsheet is formatted with column headings, so MATLAB is able to automatically

determine its structure.
4. Note that Imported Data is set to Column Vectors by default.
5. MATLAB will create variables called X and Y to match the column names.

15

6. Open the Import Selection drop-down menu and choose “Generate function”. This will generate
a file we will use later.

7. Return to the Import window and click the green checkmark (to actually perform the import for

the first time). Close the Import window.

5.3 Plot the Data
To take a quick look at the data, use the command:

plot(X, Y)

5.4 Import Data in a script
In many applications, it is necessary to repeat the same methodology with different sets of data. Even if
the data are the same, it may be necessary to try different approaches. Consequently, it is beneficial to
automate the process.

Return to the MATLAB editor to see the code generated by the Import Wizard.

The details of this file are not particularly important to us at this point. The key is that running this
function and providing it the file name for our data will reproduce what we did in the wizard.

[X, Y] = importfile(‘SampleData.xls’)

16

5.4.1 Exercise
1. Run the Import Wizard and generate a function.
2. Choose File | Save in the MATLAB Editor.
3. Call the file importsampledata.m.
4. MATLAB now underlines the function name in the first line to notify us of a discrepancy. MATLAB

will ignore the name in line 1 and instead use the file name. It is recommended to keep these
names consistent.

5. Change line 1 to use the function name importsampledata. MATLAB actually recommends this fix,
so you can make this change by right-clicking and choosing “Replace function name by file name”.

6. Save the file and close it.
7. In the command window type

[X, Y] = importsampledata(‘SampleData.xls’)

5.4.2 Exercise: Write a MATLAB script main.m
1. Create a script called main.m with the commands:

[X, Y] = importsampledata(‘SampleData.xls’)
plot(X, Y)

17

6 Plotting

6.1 Creating Plots Interactively
Once you have data in your workspace, you can use either the MATLAB GUI (graphical user interface) or
MATLAB commands like “plot” to create plots. Run your main.m script from Chapter 4 to create the
variables X and Y in the workspace and show the result of a plot command. For now we’ll close the
Figure window and create a new one using other methods.

main

Click the Plots button in the ribbon to open the Plots toolbar.

The plots are greyed out because no variables are selected for plotting.

in the Workspace tab, select the X and Y variables and you’ll see that MATLAB offers several plotting
choices.

Click the arrow next to the plots to see more options. Click on the Catalog button to open MATLAB’s plot
catalog.

18

6.2 Format the Plot
We’ll start with the simple plot:

plot(X, Y)

First we will add some labels to the plot.

1. On the Insert menu, choose X-label, type “X”
2. On the Insert menu, choose Y-label, type “Y”
3. On the Insert menu, choose Title, type “Sample Data”

Open the Property Editor from the View menu.

19

Now click on line graph to see the properties of the data series in the Property Editor.

We’ll remove the lines and change the markers to red X’s.

The resulting plot looks like this:

20

6.3 Create script file
Now we would like to reproduce this formatting every time the data are imported. Choose File |
Generate Code. MATLAB generates the code needed to reproduce your formatting.

21

MATLAB creates a new M-file which will reproduce your graph.

6.4 Exercise: Use this formatting in your script
Copy the code from the generated m-file into your script in order to reproduce the formatting that we
created interactively. You will need to make sure that the variable names are consistent.

22

7 Fitting a Model to the Sample Data

7.1 Polynomial Fitting
MATLAB has built in routines for polynomial fitting that will work well for the sample data we have
created. We will use the function polyfit which takes the x and y values as arguments. It also requires a
third argument which is the degree of polynomial to use for the fit.

p = polyfit(X, Y, 2);

The result of the polyfit command is a vector of polynomial coefficients. MATLAB has a number of built-
in functions for dealing with polynomials in this form. To learn more about functions for working with
polynomials, push SHIFT+F1 and type polynomial.

7.2 Use polyval to evaluate the fitting polynomial
In order to compare the fitted polynomial to the data, use the function polyval to evaluate the
polynomial at the points in the vector X.

values = polyval(p, X);

7.3 Plot the fit
We can then superimpose the fitted polynomials onto the sample data plot. In order to have MATLAB
reuse the figure window and keep the old graph, use the command hold on.

hold on
plot(X, values, ‘color’, ‘b’);
hold off

23

7.4 Use a Different Model
For a more complicated model, it will be necessary to use our own function to tell MATLAB how to
calculate the data values.

Let’s consider a model with five coefficients and a sinusoidal term:

𝑦𝑦 = 𝑐𝑐1𝑥𝑥2 + 𝑐𝑐2𝑥𝑥 + 𝑐𝑐3 + 𝑐𝑐4sin (𝑐𝑐5𝑥𝑥)

We’d like to solve for a value of 𝑐𝑐 = [𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4 𝑐𝑐5]. We will use MATLAB’s non-linear fitting
routines, which require a MATLAB function that computes the model. This function needs to be stored
in its own m-file called model.m.

function y = model(c, x)
 y = c(1)*x.^2 + c(2)*x + c(3) + c(4)*sin(c(5)*x);
end

7.5 Performing the Non-Linear Fit
In order to have MATLAB do the fitting, we will use the lsqcurvefit command. This command does most
of the work for us because it is intended for curve fitting in the least-squares sense.

fit = lsqcurvefit(@model, [1 1 1 5 5], X, Y)

Note that we need to give an initial guess for the coefficients and use the @ sign to pass the name of our
model function. The @ tells MATLAB to pass a function handle, rather than evaluate the function model.
The output of the command is the optimal value for the coefficients. To evaluate the fit, we will plot it
along with the sample data and the polynomial fit.

values = model(fit, X);
hold on
plot(X, values, 'color', 'black');
hold off

7.6 Exercise
1. Add the above commands to your main.m file so that running it produces the finished graph,

with the data points and the two fits plotted.
2. Add a legend to your plot to explain which fit is which.

24

25

8 Three-Dimensional Surface Plot

8.1 Function of two variables
In this section we’ll create a surface plot to visualize a function of two variables:

𝑧𝑧 = 𝑥𝑥 sin(𝑦𝑦)

In order to set this up in MATLAB, we will need to create a matrix that is essentially a table of values for
z over ranges of values for each of x and y.

8.2 Data grid
In order to set up these grids of values, we’ll use meshgrid. We’ll start with a very small range to
illustrate the concepts.

[X, Y] = meshgrid(1:5);

This gives the following results for X and Y:

𝑋𝑋 =

⎣
⎢
⎢
⎢
⎡
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5⎦

⎥
⎥
⎥
⎤
 𝑌𝑌 =

⎣
⎢
⎢
⎢
⎡
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5⎦

⎥
⎥
⎥
⎤

The idea is that by reading off corresponding entries in X and Y we can obtain all 25 points in the desired
range.

8.3 Evaluate Function
Now we need to find the value of z at each of these points. By writing the function in element-wise
notation, we can compute the value of z at each of the 25 points in a single MATLAB command.

Z = X .* sin(Y);

Note the use of the “dot” before the multiplication, and that the built-in sin function will operate
element-wise on each entry in the matrix Y.

8.4 Plot with mesh
To draw the graph, we use the mesh command:

mesh(X, Y, Z);

This graph doesn’t look like much since we only have 25 points.

26

Now that we have the basic idea, we can expand the ranges of the variables and plot over more points.

8.5 A Better Plot
This code uses an expanded range, steps by 0.1 for more detail, and uses separate ranges for each of X
and Y. This will create X and Y matrices that are rectangular instead of the square ones in the previous
example.

rangeX = -10:.1:10;
rangeY = -5:.1:5;
[X, Y] = meshgrid(rangeX, rangeY);
Z = X .* sin(Y);
mesh(X, Y, Z);

27

8.6 Explore the Graph
In the Tools menu, choose Rotate 3D.

You can now click and drag on the graph to change the viewpoint.

28

9 Programming

9.1 MATLAB editor
To get into the MATLAB editor, you can double-click on an M-file in the Directory window, or choose File
| Open and pick an m-file, or choose Window | Editor. Creating a new m-file from the Directory window
conveniently creates a function prototype automatically and will save you a little bit of work. Right-click
and choose New M-file. In this section we will work on an M-file called parabola.m. Here is what the
editor looks like when you open a new m-file.

Notice that MATLAB automatically inserted a function definition. The MATLAB editor automatically
applies colours to your code to make it more readable. Comments begin with a % and are green.

This function will take the parameters for a parabola and plot it. The parabola will be of the form:

𝑦𝑦 = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐

9.2 Methodology (test commands, add to script)
First, we delete the output_args and replace input_args with a,b,c the parameters of the parabola. Let’s
start with a simple plot.

29

To execute the code, type “parabola(1, 2, 1)” at a command window. A plot window will appear.

Unfortunately using a fixed range is not the best idea if we are going to handle a general parabola. There
may be nothing of interest in the specified -10 to 10 domain. E.g. 𝑦𝑦 = 𝑥𝑥2 − 50𝑥𝑥 + 600 has roots x=20
and x=30 and a critical point at x=25. Running “parabola(1, -50, 600)” gives a graph:

We need to find the roots of the polynomial and use these somehow in the plot range. Let’s experiment
at the command window:

p = [1 -50 600]
roots(p)
sort(ans)

We need to sort the output of roots so that we have the smaller root first. Let’s add the following code
to the function:

rts = sort(roots([a b c]));
x1 = rts(1);
x2 = rts(2);
x = x1:.1:x2;

Now the plot will look like this:

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

20

40

60

80

100

120

140

-10 -5 0 5 10
200

300

400

500

600

700

800

900

1000

1100

1200

30

It would be even better to have the plot range extend on both sides of the roots, rather than just
between the roots.

20 22 24 26 28 30
-25

-20

-15

-10

-5

0

31

9.3 Testing, debugging, spying as it’s running
Seems easy enough, right? But we never considered what parameters are valid for our function and
what happens if MATLAB can’t find the roots!

What happened? Let’s spy on parabola as it runs. In the editor, go to line 9 where the error is occurring,
and choose Debug | Set/Clear Breakpoint or press F12. Now run parabola. The editor opens with the
cursor at line 9.

15 20 25 30 35
-40

-20

0

20

40

60

80

32

To see the value of variables, hover the mouse over them, or look in the workspace.

The parabola has complex roots, which can’t be used to specify the range to graph. In the Editor
window, click Continue to exit the debugger.

9.4 Exercises

9.4.1 Fix the function so it can plot a parabola with complex roots
Your function should choose a relevant range for the plot. Hint: There will always be a real-valued

critical point. If 𝑦𝑦 = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐, then 𝑦𝑦′ = 2𝑎𝑎𝑎𝑎 + 𝑏𝑏 so that 𝑦𝑦′ = 0 when 𝑥𝑥 = − 𝑏𝑏
2𝑎𝑎

.

9.4.2 Handle parabolas with a double root
Running parabola(1, -2, 1) gives an apparently empty plot (if you look really closely there is a dot at
(1,0):

Investigate what is going wrong in the function and fix it.

	1 MATLAB Basics
	1.1 Obtaining software
	1.2 Research License, Classroom license
	1.3 Signing up for the Research License
	1.4 Troubleshooting / Problems Running MATLAB
	1.5 MATLAB Versions
	1.6 Running MATLAB

	2 Desktop Environment
	2.1 Starting up MATLAB
	2.1.1 Command Window

	2.2 Command history
	2.3 Current Folder
	2.4 Workspace
	2.5 Editor
	2.6 Matrices, Arrays
	2.6.1 Dimensions, contents
	2.6.2 Ranges (vectors)
	2.6.3 Manipulating Elements
	2.6.4 Building up matrices
	2.6.5 Matrix operations
	2.6.6 Array operations

	2.7 Assigning entries, rows, columns
	2.8 Deleting entries, rows and columns
	2.9 Functions
	2.9.1 Function, operand, result
	2.9.2 Dimensions of results
	2.9.3 Example Statistical Summary Functions

	2.10 Logical Indexing, Finding Elements
	2.11 Exercises
	2.11.1 Try the following commands
	2.11.2 Define the following matrices
	2.11.3 Performing matrix and array operations
	2.11.4 Apply functions to the matrices you have defined
	2.11.5 Investigate the “find” command

	3 Getting Help
	3.1 From the Command Window
	3.2 Function Browser
	3.3 Help Button
	3.4 Help Window
	3.5 Examples

	4 MATLAB editor
	4.1 Basics
	4.1.1 Starting editor
	4.1.2 Source navigation
	4.1.3 Saving
	4.1.4 Splitting the editor Window

	4.2 Running your script
	4.3 Function in an m-file
	4.4 Debugging Commands
	4.5 Development Methodology
	4.5.1 Experiment at command line, put working commands into script
	4.5.2 Identify parameters that will change and make then function arguments

	5 Data Analysis Example
	5.1 Importing data into MATLAB
	5.2 Import Data interactively
	5.3 Plot the Data
	5.4 Import Data in a script
	5.4.1 Exercise
	5.4.2 Exercise: Write a MATLAB script main.m

	6 Plotting
	6.1 Creating Plots Interactively
	6.2 Format the Plot
	6.3 Create script file
	6.4 Exercise: Use this formatting in your script

	7 Fitting a Model to the Sample Data
	7.1 Polynomial Fitting
	7.2 Use polyval to evaluate the fitting polynomial
	7.3 Plot the fit
	7.4 Use a Different Model
	7.5 Performing the Non-Linear Fit
	7.6 Exercise

	8 Three-Dimensional Surface Plot
	8.1 Function of two variables
	8.2 Data grid
	8.3 Evaluate Function
	8.4 Plot with mesh
	8.5 A Better Plot
	8.6 Explore the Graph

	9 Programming
	9.1 MATLAB editor
	9.2 Methodology (test commands, add to script)
	9.3 Testing, debugging, spying as it’s running
	9.4 Exercises
	9.4.1 Fix the function so it can plot a parabola with complex roots
	9.4.2 Handle parabolas with a double root

