Posts for Future graduate students

A blog written by quantum researchers for quantum researchers and those interested in their work.

What you can expect from RQI-N 2016

The decade of the 2000s has seen the birth of the fast-growing field of Relativistic Quantum Information (RQI). RQI brings together the two pillars of modern physics, general relativity and quantum theory, with information theory. Results in the field of RQI range from new insights into the laws of Nature (e.g., black hole physics and cosmology) all the way to concrete applications in quantum computing and quantum-secured communication.

Tomography turns out to be harder than expected

Recently, I had a very interesting discussion with Joel Klassen, one of the PhD students here at the Institute for Quantum Computing (IQC). He's been working on a problem that is closely related to that of quantum marginals.

Anyone can understand quantum mechanics - Part 3

On the left Walter White from Breaking Bad. On the right: Heisenberg in front of a blackboard full of equations

Before we begin, HAVE YOU WATCHED THE VIDEO “ANYONE CAN QUANTUM”??? Paul Rudd, Keanu Reeves, Stephen Hawking, Quantum Chess, Quantum Physics for Babies, and even tardigrades: this video has it all!

Detecting Gravitational Waves. Can Quantum Mechanics Help?

Massive bodies warp spacetime

Secrets can be very hard to keep. The thought of having to wait five months to be able to talk about what is arguably the biggest scientific discovery in a century is incomprehensible. But for every member of the LIGO Scientific Collaboration (LSC), it was absolutely essential that nobody let the cat out the bag (or should that be box?).

Quantum Computational Intelligence

Imagine solving mathematical problems where you could use the full physical range of computational possibilities within the laws of the universe, and be inspired by the sublime algorithmic intelligence of the human brain. This is precisely why the emerging field of quantum machine learning (QML) has received so much recent attention. In this blog post, we’d like to discuss the fundamental ideas and applied value of machine learning to computation in general, and then contextualize these ideas in a new way within the paradigm of quantum computation.

Diary of a quantum engineer

Quantum engineering is a term that is becoming increasingly common across research groups and industry alike. One example, which is the subject of this blog post, is the Engineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral Training in Quantum Engineering, based at the University of Bristol. It is a centre that I myself have been trained in, and currently am part of. But what is a Centre for Doctoral Training (or ‘CDT’ as they are commonly referred to), and what is quantum engineering?

Lights, camera, experiment. Why video abstracts are here to stay.

Until recently, researchers had two common ways they could share their work: written papers and verbal lectures. In fact, for centuries these were our only basic forms of communication with one another, and if an individual wished to share an idea with someone else they would either have to write it down or tell them in person.

Tomaytos, Tomahtos and Non-local Measurements

A projective measurement of an observable A

One of my discoveries as a physicist was that, despite all attempts at clarity, we still have different meanings for the same words and use different words to refer the the same thing. When Alice says measurement, Bob hears a `quantum to classical channel', but Alice, a hard-core Everettian, does not even believe such channels exist. When Charlie says non-local, he means Bell non-local, but string theorist Dan starts lecturing him about non-local Lagrangian terms and violations of causality. And when I say non-local measurements, you hear ????

QIP 2016

Elk in the winter

Quantum Information Processing (QIP) is a conference held each year about quantum computation and quantum information that brings out a large portion of the quantum computing community. The QIP conference started in 1998, and has continued annually. QIP 2016 marks the 19th gathering of scientists and researchers from around the world to join together and discuss various aspects of this specialized field.

Ask not for which local-hidden-variable-theory the Bell tolls. It tolls for all.

The diagram of the Shalm lab setup

It looks like 2015 is the year of the loophole-free Bell test. Three different papers, with three very different p-values, all claim to put the final nail in the local-realistic coffin. I will compare the designs and results of the three experiments with an eye towards their strengths and weaknesses.[1] The three papers are, in order of experiment completion:

Pages

Blog topics

  1. 2016 (21)
    1. November (1)
    2. October (1)
    3. September (2)
    4. August (3)
    5. July (2)
    6. June (2)
    7. May (2)
    8. April (2)
    9. March (3)
    10. February (2)
    11. January (1)
  2. 2015 (16)
    1. December (1)
    2. November (2)
    3. October (2)
    4. September (2)
    5. August (2)
    6. July (2)
    7. June (3)
    8. May (2)

Educational programs

QKD - Quantum Key Distribution Summer School

USEQIP - Undergraduate School on Experimental Quantum Information Processing

QCSYS - Quantum Cryptography School for Young Students

Quantum Innovators logo