Monday, November 7, 2016

Monday, November 7, 2016 — 11:30 AM EST

A proof of the quantum data processing inequality with a combinatorial flavour

Ashwin Nayak, Institute for Quantum Computing

The quantum data processing inequality (equivalently, the strong sub-additivity of von Neumann entropy) is a cornerstone of quantum information theory.  It has been proven in numerous ways, each proof highlighting different aspects of the property.

Monday, November 7, 2016 — 2:30 PM EST

Quantum Engineering of Superconducting Qubits

William Oliver, Massachusetts Institute of Technology

Superconducting qubits are coherent artificial atoms assembled from electrical circuit elements and microwave optical components. Their lithographic scalability, compatibility with microwave control, and operability at nanosecond time scales all converge to make the superconducting qubit a highly attractive candidate for the constituent logical elements of a quantum information processor. 

S M T W T F S
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
  1. 2021 (45)
    1. November (2)
    2. October (5)
    3. September (3)
    4. August (4)
    5. July (4)
    6. June (5)
    7. May (3)
    8. April (4)
    9. March (5)
    10. February (4)
    11. January (6)
  2. 2020 (31)
    1. December (2)
    2. November (5)
    3. October (4)
    4. September (3)
    5. August (2)
    6. June (4)
    7. April (1)
    8. March (3)
    9. February (5)
    10. January (2)
  3. 2019 (139)
  4. 2018 (142)
  5. 2017 (131)
  6. 2016 (88)
    1. December (9)
    2. November (15)
    3. October (12)
    4. September (9)
    5. August (11)
    6. July (5)
    7. June (6)
    8. May (3)
    9. April (4)
    10. March (6)
    11. February (5)
    12. January (4)
  7. 2015 (82)
  8. 2014 (94)
  9. 2013 (91)
  10. 2012 (122)
  11. 2011 (117)
  12. 2010 (41)
  13. 2009 (4)
  14. 2008 (1)
  15. 2005 (1)
  16. 2004 (3)