

Introducing 3D transmon

Hanhee Paik

Department of Applied Physics Yale University

Experiment

Dave Schuster Gerhard Kirchmair Adam Sears Blake Johnson Matt Reagor Luyan Sun Matt Reed Leo DiCarlo Eric Holland Brian Vlastakis

<u>Pl's</u>

Luigi Frunzio Steve Girvin Leonid Glazman Michel Devoret Rob Schoelkopf

<u>Theory</u>

Lev Bishop Gianluigi Catelani Dong Zhou Simon Nigg Eran Ginossar

Outline

- Review : Superconducting qubits, transmon and circuit QED
- 3D transmon a transmon in a waveguide cavity : Coherence improved by an order of magnitude
- New physics observed in superconducting qubits : What can T₁ and T₂ tell us?
- How to manipulate 3D transmons? : Single and two qubit gates using microwave driving

Paik et al. Phys. Rev. Lett. 107, 240501 (2011)

Superconducting Qubits

Josephson junction (dissipationless)

electromagnetic oscillator

$$\begin{split} \hat{H} &= 4E_C \left(\hat{n} - n_g \right)^2 - E_J \cos \hat{\varphi} \\ \text{Charging} \quad E_c = \frac{\theta^2}{2 \mathcal{C}_{\Sigma}} \quad \begin{array}{c} \text{Josephson} \\ \text{energy} \end{array} \quad E_J = \frac{\hbar^2}{4 \theta^2 \mathcal{L}_J} \end{split}$$

Interacting with SC qubits: Circuit QED A Circuit Implementation of Cavity QED

2g = vacuum Rabi freq.

$$\kappa$$
 = cavity decay rate

 γ = "transverse" decay rate

V. Bouchiat, D. Vion, P. Joyez, D. Esteve, & M.H. Devoret, *Physica Scripta* **T76**, 165 (1998).

Transmon : Outsmarting 1/f Charge Noise

Cooper-pair Box

<u>"Transmon"</u>

Koch et al., 2007; Houck et al., 2008

Coherence in Conventional Transmon Qubit

History of Charge Qubit Coherence

What is limiting coherence?

THE Question : Where's the Dissipation?

Which element matters the most?

Typical Junction: Dirt Happens

Dolan Bridge Technique PMMA/MAA bilayer Al/AlOx/Al Qubit: two 200 x 300 nm junctions R_n ~ 3.5 kOhms I_c ~ 40 nA Current Density ~ 30- 40 A/cm²

100 nm

Acc.∨ Spot Magn Det WD 10.00 kV 2.0 220207x TLD 5.0 Sirion

"participation ratio" = fraction of energy stored in material

even a thin (few nanometer) surface layer will store ~ 1/1000 of the energy

If surface loss tangent is poor (tan $\delta \sim 10^{-2}$) would limit Q $\sim 10^{5}$

Increase spacings

- ➡ decreases energy on surfaces
- ➡ increases Q

as shown in:

Gao et al. 2008 (Caltech) O'Connell et al. 2008 (UCSB) Wang et al. 2009 (UCSB) Recent IBM work by Chow and Colores el at. 2012

How to Reduce the Importance of the Surface

CPW/Compact Resonator*

Surface participation ratio

$$p_{surf}^{diel} \sim 10^{-2} - 10^{-3}$$

3D

L ~ 5,000 μm

Assume: t ~ 3 nm

 $p_{\rm surf}^{\rm d/el} \sim 0 - 10^{-6}$

Use 3D cavity for circuit QED experiment!

A High-Q Aluminum Superconducting (3D) Cavity

no power dependence of Q : absence of surface dielectric loss M. Reagor, H. Paik et al. in preparation (2012)

Rectangular Waveguide Cavity

aluminum alloy (6061-T6, Tc ~ 1.5 K)

- Internal Q ~ 5,000,000 with 6061 aluminum alloy :
 - Q > 30M can be obtained with pure aluminum.
- Rectangular cavity lower symmetry than a cylindrical cavity
 lower density of modes in the measurement bandwidth

Q) How do we couple the qubit to this cavity?

Q) How do we couple the qubit to this cavity? A) Add an antenna!

Rectangular Waveguide Cavity for circuit QED

single small Al JJ with a short dipole antenna

 $d \sim 0.01\lambda$

"3D transmon" 50 mm 250 μm

 $g = \frac{\vec{d} \bullet \vec{E}_{rms}}{h}$

Smaller fields compensated by larger dipole Still has same net coupling! g ~ 100 MHz

All 3D Qubits Measured at Yale

*Bound on conventional transmon T₁: Houck et al. Phys. Rev. Lett. **101**, 080502 (2008)

Strong Coupling Achieved

Strong Dispersive Hamiltonian:

$$H_{\rm eff} = \hbar \omega_{\rm cav} a^{\dagger} a + \left(\frac{\hbar}{2} \omega_{q}' + \hbar \chi a^{\dagger} a\right) \sigma_{z}$$

State dependent frequency shift

Stark shift per photon now > 1,000 linewidths

What do we learn about Josephson junctions from 3D transmon?

Quality Factor of Josephson Inductance

The Josephson junction has not been limiting the SC qubit coherence

Quasiparticles in Josephson Junction

*Catelani et al. PRL 106, 077002 (2011)

Fractional quasiparticle density $X_{qp} = X_{ne} + \sqrt{\frac{2\pi kT}{\kappa}} e^{-\Delta/kT}$ $\frac{1}{T_1} = X_{qp} \frac{\omega}{\pi} \sqrt{\frac{2\Delta}{\hbar\omega}}$ $\frac{\Delta f}{f} = -\frac{X_{qp}}{2} \left(\frac{1}{\pi} \sqrt{\frac{2\Delta}{\hbar\omega}} + 1 \right)$ T₁ and frequency shift agree with theory

One free parameter - gap $\Delta = 194 \ \mu V$

by Catelani et al.*

Coherence Dominated by Non-1/f noise

Exponential Ramsey envelope : Absence of 1/f noise

Dephasing not yet limited by 1/f critical current noise

Reported 1/f critical current noise model** does not explain this behavior.

**D. J. Van Harlingen et al., Phys. Rev. B 70, 064517 (2004)

What's limiting T*₂?

*A. Sears et al. in preparation (2012)

What's limiting T*₂?

*A. Sears et al. in preparation (2012)

What's limiting T*₂?

Stability of Josephson Junction

Frequency stable < 600 Hz : Stability in E_1 or E_c - 80 ppb

Breakthrough in SC Qubit Coherence

by introducing 3D circuit QED architecture

Charge Qubit Coherence : Saga continues

the Josephson junction is limiting the qubit coherence

Coherent control of 3D transmons

• Use microwave to perform single/two qubit gates

- Use a qubit state-dependent cavity coherent states
- When the cavity is driven, cavity coherent state evolves giving phase to each qubit state.

Phase of Driven Harmonic Oscillator

$$H = \omega_c a^{\dagger} a + \epsilon(t) e^{-i\omega_d t} a^{\dagger} + \epsilon^*(t) e^{i\omega_d t} a$$

Apply off-resonant drive to displace the cavity

$$|\alpha(T)\rangle = \theta^{i\phi(T)}|\alpha(0)\rangle$$

 $\begin{aligned} \dot{l}\dot{\alpha} &= \Delta \alpha + \varepsilon(t) & \Delta = \omega_c - \omega_d \\ \phi(T) &= \int_0^T Im[\dot{\alpha}\alpha^*] dt + \int_0^T \Delta |\alpha|^2 dt \\ \text{Geometric origin} & \text{Dynamical origin} \\ \text{(Area)} & \text{(energy)} \end{aligned}$

Single-Qubit Phase Gate (z-gate)

If $\phi_e - \phi_g = \pm \pi$: Z-gate

Also single qubit geometric phase demonstrated by M. Pechal, et al. arXiv:1109.1157 (2011)

Single-Qubit Phase Gate

Single Qubit z-gate

Two-Qubit Phase gate $\mathcal{O}_{ee} \mathcal{O}_{eg}$ $\omega_{ge}\omega_{gg}$ Cavity drive $|11\rangle$ $|10\rangle$ $|01\rangle$ $|00\rangle$ α_{ge} α_{eg} α_{gg} $\alpha_{\scriptscriptstyle ee}$ Frequency $(|gg\rangle + |ge\rangle + |eg\rangle + |eg\rangle + |ee\rangle)|0\rangle$ $\rightarrow \left(\left| \ \mathcal{G}\mathcal{G} \right\rangle + \mathbf{e}^{i\phi_{ge}} \left| \ \mathcal{G}\mathbf{e} \right\rangle + \mathbf{e}^{i\phi_{eg}} \left| \ \mathbf{e}\mathcal{G} \right\rangle + \mathbf{e}^{i\phi_{eg} + \phi_{eg} + \phi_{eg}} \left| \ \mathbf{e}\mathbf{e} \right\rangle \right) \right| 0 \right\rangle$ If $\phi_{ee} = \pi$: cPhase

Ramsey experiments to measure two qubit phase

Ramsey experiments to estimate gate fidelity

Comparing Ramsey contrast gives estimate on gate fidelity

Demonstrating cPhase gate

 T_{gate} = 200ns, Δ = 80 MHz, P = 1.2 dBm

Paik et al. work in progress (2012)

Conclusion

- Demonstrated new coherence time for superconducting qubit using a new 3D cQED architecture
 T₁ ~ 60 μs (up to 75 μs)
 T₂ (Ramsey) ~ up to 30 μs, T₂ (Echo) ~ up to 45 μs
- New observation of physics in Josephson junction qubits
 - Josephson junction Q > 2 M (current coherence limitation in SC qubit is not the junction)
 - Sensitive detection of non-equilibrium quasiparticles
 - No evidence of 1/f noise in critical current/capacitance
 - Dephasing from cavity photon fluctuations.
- Demonstrated single and two qubit phase gate using cavity geometric/dynamical phase in coupled 3D transmon qubits.
- Paik et al. Phys. Rev. Lett. 107, 240501 (2011)