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Quantum Engineering

Recent progress in areas such as
– nano-fabrication
– photonics
– laser technology
– ion-trapping
– atom chips
– Bose-Einstein condensation

Enables wide range of applications for quantum phenomena

Quantum effects such as tunnelling, coherence, interference and
entanglement hold the promise novel technological applications
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Quantum Engineering

Recent progress in areas such as
– nano-fabrication
– photonics
– laser technology
– ion-trapping
– atom chips
– Bose-Einstein condensation

Enables wide range of applications for quantum phenomena

Quantum effects such as tunnelling, coherence, interference and
entanglement hold the promise novel technological applications

Quantum engineering requires control of quantum effects
Effective control requires accurate models of the system
Need for identification of quantum systems
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Quantum System Identification

System identification for quantum systems often interpreted as
– quantum state tomography (or estimation)
– quantum process tomography

But for control a dynamical model of the system is required
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Quantum System Identification

System identification for quantum systems often interpreted as
– quantum state tomography (or estimation)
– quantum process tomography

But for control a dynamical model of the system is required

System must satisfy evolution equation
Such as the quantum Liouville equation

.
ρ = −i[H, ρ] + LD(ρ)

Need to identify dynamical operators
– H (Hamiltonian)
– LD (dissipation)

If is Hamiltonian control dependent (H = H[u]), need to identify
this dependency as well
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Protocols for Hamiltonian Estimation

Protocol 1: Continuous weak measurements

Problems: measurement-backaction and accuracy
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Protocols for Hamiltonian Estimation

Protocol 1: Continuous weak measurements

Problems: measurement-backaction and accuracy

Protocol 2: Projective measurements at discrete times
Initialize system in a known state ρ0
Let system evolve for time t under (unknown) Hamiltonian
Perform projective measurement Π

Output state Π[ρ(t)]

Repeat many times for given t, then vary t

Challenge
As outcome of a single experiment is random, many repetitions
of individual experiment necessary to build up statistics, but
total number of experiments should be minimized

Quantum System Identification 3 Sophie Schirmer



Qubit Hamiltonian Tomography

Hilbert space picture Bloch sphere picture
State density op ρ ∈ D(H) Bloch vector s ∈ R3

ρ = 1
2
(I+ s · σ) sx = Tr(ρσx), etc

σ = (σx, σy, σz) σx, σy, σz Pauli matrices
Tr(ρ2) ≤ 1 ||s||2 = 2Tr(ρ2) − 1 ≤ 1

Evolution d
dt
ρ(t) = −i[H, ρ(t)] d

dt
s(t) = R(d)s(t)

H = 1
2
(d0I+ d · σ) R(d) rotation about d
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Fixed Hamiltonian identification

Find Rotation Frequencies and Declination of Rotation Axes

Rotation of the Bloch vector s(t) with s(0) = (0, 0, 1)T about axis d

Observable oscillations 〈σz(αt)〉 = z(αt) = cos(αt) sin
2 θ+ cos2 θ

Rotation frequency ||d||

and declination angle θ
determined by

position and height
of Fourier peaks,
cos θ =

√
F(0)

minimum (tmin, zmin)

in the oscillation data

maximum likelihood
(best strategy)
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Multiple Hamiltonians

Single Hamiltonian: suffices to determine Rabi frequency angle θ

Multiple rotations about different axes dk ⇒ must determine the
relative azimuthal angles φk = φ′k − φ′r w.r.t. a reference axis dr

Finding azimuthal angles between rotation axes:
Having determined ||d|| and θ of the axes:
Choose reference axis dr (some conditions apply) with φr = 0

Repeat all Rabi oscillation experiments with new initial state s1 =

(cosβ, sinβ, 0)T obtained by rotating s0 about reference axis by
angle by suitable angle αr.

αr = arccos

cos(2θr) + 1

cos(2θr) − 1

 , β = arctan(−
√

|2 cos(2θr)| sec θr)

Spectral or Bayesian analysis of Rabi data ⇒ horizontal angles

z(α) = C(1− cosα) +D sinα

C = 1/2 sin(2θk) cos(φk − β), D = sin θk sin(φk − β).
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General Strategy
(1) Select set of fixed values for controls

f(`) = (f(`)m ), m = 1, 2, . . . ,M, ` = 1, 2, . . . , L.

(2) Find rotation frequencies ||d
(`)
0+m|| and declination angles θ(`)

0+m

of the rotation axes

d
(`)
0+m = d0 + f(`)mdm, ∀`,m

(3) Find horizontal angles φ(`)
0+m between rotation axes

(4) Identify control dependence, e.g., by plotting d
(`)
0+m versus f(`)m

If plot suggests linear dependence find best straight line fit
using linear regression:
– y-intercepts determine d0x, d0y and d0z
– slopes determine dmx, dmy and dmz

Otherwise find non-linear fit

Phys Rev A 69, 050306 (2004)

Quantum System Identification 7 Sophie Schirmer



Example for Linear Control Dependence
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Dissipation Characterization

Dissipation ⇒ Damping of ob-
served coherent oscillations

z(t) = a+ be−γt sin(ω0t)

Lorentzian broadening of δ-
like peaks in Fourier spectrum

|F(ω)| = ω0
[γ2+(ω0−ω)2][γ2+(ω+ω0)

2]

|F(ω)| — maximum at ω =
√
ω2
0 − γ2 with peak value (2γ)−1

Can estimate frequency ω0 and dephasing rate γ from position ω∗
peak height |F|∗ of peak: γ = (2|F|∗)

−1 and ω0 =
√
ω2
∗ + γ2.
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Dissipation Characterization

But peak height identification inaccurate.

Better estimate for γ using width of the peak. Let ω1,2 be the
(positive) frequencies for which |F(ω)| assumes half its maximum or
1/(4γ). Then the full-width-half-maximum 2d of |F(ω)| is |ω2 −ω1| or

d =

[√
ω2
∗ + 2

√
3γ

√
ω2
∗ + γ2 −ω∗

]
Given ω∗ and half-width d of the peak we can solve for γ

γ =
1

6

√
6g(ω∗, d) − 18ω2

∗

where g(ω∗, d) =
√
9ω4
∗ + 12d2ω2

∗ + 12d3ω∗ + 3d4. Thus, in principle
we can determine both the frequency and the dephasing rate by
estimating the position and width of the fourier peak.

Phys. Rev. A 71 062312 (2005); Phys. Rev. A 73, 062333 (2006)

Even better estimates using Bayesian Estimation!
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Open System Identification — Bayesian
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Open System Identification — Bayesian

Noisy sparse signal ⇒ spectral estimation inaccurate

log-Likelihood function still has sharp peak

Bayesian estimation possible even if initial state and measurement
basis uncertain, provides estimates for both!

arXiv:1012.4593
Quantum System Identification 11 Sophie Schirmer



Characterizing Subspace Confinement

Qubit characterization assumed dynamics confined to 2D subspace

Reality: many degrees of freedom — dynamics may not be confined

Experimental characterization of subspace leakage possible

Two scenarios: Measurement discriminates
|0〉, |1〉 and “other” ⇒ confinement characterization easy
Only |0〉 and “other” ⇒ special protocols needed
Detect modulations in Rabi oscillation data NJP 9, 384 (2007)

Visual detection sometimes possible but not reliable
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Assessing Subspace Leakage

Cumulative amplitudes of non-qubit states for given eigenstate of H

ε = 1− Tr[Πρ], Π = |0〉〈0| + |1〉〈1|
Can be calculated from peak heights in spectrum. Assume

f(t) = |〈0|A†e−iHdtA|0〉|2 =
∑
k,`

hk`e
iωk`t

hk` height of Fourier peak for transition k → ` with frequency ωk`

ε =
∑
k

√√√√hk`hkm
h`m

, b, c 6= a

Exact calculation theoretically possible but generally impractical —
signal/noise ratio problem (signal ’lost’ in noise floor)

Can give upper and lower bounds on subspace confinement based
only on two main peaks h0 and h01

1−
√
h0 + 2h01 ≤ ε ≤

1

2
(1−

√
2h0 + 4h01 − 1)

Improvement using Bayesian estimation?
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Two-qubit Hamiltonian Tomography

Interaction identification by Concurrence Spectroscopy

Aim: Characterize interaction Hamiltonian HI for two coupled qubits
single qubit control Hamiltonian known, fixed coupling

Idea: Use concurrence (measure of entanglement)

C(t) = ρ(t)(σy ⊗ σy)ρ(t)∗(σy ⊗ σy)
σy usual Pauli matrix, ρ(t) system density operator

Outline of protocol for experimental characterization of HI
Initialize system in different separable basis states
Measure time-evolved states ⇒ ρ(t)

Calculate concurrence C(t) time-series for each input state
Compute concurrence spectra
Peak frequencies/heights determine interaction Hamiltonian

Limitations: only non-local part of interaction Hamiltonian
J. Phys A 39, 14649 (2006); PRA 73, 052317 (2006)
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General Hamiltonians — Identifiability

What information can we hope to extract about a given system with a
certain limited set of resources?
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General Hamiltonians — Identifiability

What information can we hope to extract about a given system with a
certain limited set of resources?

E.g., suppose we can

only prepare system in a set of computational basis states |n〉, n =

1, . . . ,N = dimH

measure the system in these basis states Πn = |n〉〈n|

Resources not sufficient for
– Process tomography, even unitary case
– Full Hamiltonian identification, even for constant H

Nonetheless a significant amount of information about Hamiltonian
and even dissipative effects (e.g. decoherence rate) can be obtained

Stroboscopically map evolution over time
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Limitations on Identifiability

Theorem

Let H and M be Hermitian operators on H

[Hamiltonian and measurement]

Let ρ0 be a positive operator with Tr(ρ0) = 1

[initial state of the system]

If M, H, ρ0 are simultaneously blockdiagonalizable
i.e. there exists a decomposition of the Hilbert
space H = ⊕S>1s=1Hs such that

M = diag(Ms), H = diag(Hs), ρ0 = diag(ρs),

where Ms, Hs, ρs are operators on the Hilbert
spaces Hs

Then we can at most identify H up to
∑

s λsIs
where Is is the identity on the subspace Hs
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Identifiability and A-priori Information

Generic case: H and M not simultaneously block-diagonizable
Can identify H at most up to a diagonal unitary matrix
D = (1, eiφ2, . . . , eiφN) and a global energy shift λ0I

~H ' H = D†~HD+ λ0I
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Identifiability and A-priori Information

Generic case: H and M not simultaneously block-diagonizable
Can identify H at most up to a diagonal unitary matrix
D = (1, eiφ2, . . . , eiφN) and a global energy shift λ0I

~H ' H = D†~HD+ λ0I

Off-diagonal elements are real and positive in computational basis

Hk` = 〈k|H|`〉 = |〈k|H|`〉|
Then |〈k|H|`〉| = |〈k|~H|`〉| (~H as above)

With this constraint Hamiltonian is effectively uniquely determined
(up to a global energy level shift and global inversion of the energy levels)
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Identifiability and A-priori Information

Generic case: H and M not simultaneously block-diagonizable
Can identify H at most up to a diagonal unitary matrix
D = (1, eiφ2, . . . , eiφN) and a global energy shift λ0I

~H ' H = D†~HD+ λ0I

Off-diagonal elements are real and positive in computational basis

Hk` = 〈k|H|`〉 = |〈k|H|`〉|
Then |〈k|H|`〉| = |〈k|~H|`〉| (~H as above)

With this constraint Hamiltonian is effectively uniquely determined
(up to a global energy level shift and global inversion of the energy levels)

Example: Hamiltonian for spin-networks, many atomic systems
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Full Hamiltonian Tomography

Full control Hamiltonian tomography for generic N-level systems
assume N-outcome measurement in fixed basis
initialization in measurement basis states possible

Stroboscopically map coherent oscillations for different controls
Initialize qubits via simulataneous single-qubit measurements
Evolve under (fixed) control Hamiltonian Hc for time t
Measure both qubits (simple measurement)
N2 coherent osciallation traces pk`(t)

Spectral and Bayesian analysis of coherent oscillation data

Level-structure identification

Hamiltonian reconstruction

Generically, complete identification possible if system controllable

PRA 80, 022333 (2009); Laser Physics 20, 1203 (2010)
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Simpler protocols using a-priori info

Availablity of further a-priori information may significantly reduce
resource requirements

Example: Heff =

[
0 Ω1 0
Ω1 0 Ω2
0 Ω2 0

]
with Ω1,2 ∈ R+ gives

U(t, 0) = exp(−itHeff) =


c2 cos(Ωt) + s2 −ic sin(Ωt) cs[cos(Ωt) − 1]

−ic sin(Ωt) cos(Ωt) −is sin(Ωt)

cs[cos(Ωt) − 1] −is sin(Ωt) s2 cos(Ωt) + c2


with Ω =

√
Ω2
1 +Ω2

2, α = arctan(Ω2/Ω1), c = cosα and s = sinα

Single measurement trace pk`(t) = |〈`|U(t, 0)|k〉|2 contains
information about both parameters, except p22(t)

Single trace should be sufficient to fully identify the Hamiltonian

Proc. ISCCSP 2010 (arXiv:0911.5429)
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Bayesian Parameter Estimation

Signal is linear combination of mb basis functions, e.g., here
g0 = 1, g1(t) = cos(Ωt), g2(t) = cos(2Ωt)

Define log-likelihood

P(ω|d) ∝ mb −Nt

2
log10

1−
mb〈h2〉
Nt〈d2〉

 ,
where Nt is the number of data points, and

〈d2〉 =
1

Nt

Nt−1∑
n=0

d2n, 〈h2〉 =
1

mb

mb−1∑
m=0

h2m,

where elements hm of (mb, 1)-vector h are projections of (1,Nt)-
data vector d onto a set of orthonormal basis vectors derived
from the non-orthogonal basis functions gm(t) evaluated at the
respective sample times tn
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Maximizing Log-Likelihood

P(ω|d) is function of single parameter
– Ω is frequency for which P(ω|d) achieves global maximum

Coefficient vector a(Ω) gives best estimate for cos2α and thus α
Minimize ||a(x) − a(Ω)|| with am(x) as defined above

Problem of finding the most likely model (Ω,α) reduced to finding
global maximum of P(ω|d)

Finding maxima is difficult as likelihood function sharply peaked
In 1D exhaustive search possible
In general power spectrum can be used as pre-estimator
Problem: requires large number of sample points, ideally on
regular grid, i.e. many experiments
Irregular sampling can substantially reduce number of data points
required
(low-discrepancy/quasi-random sampling provides optimal coverage by min-
imising gaps for given number of samples)
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True frequency Ω = 4.0484

Power Spectra and Log-Likelihood
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Results

Data sampled at different times t in [0, 100]

For Nt ≥ 128:
– Power spectra have a single peak in the plotted range
– Reasonable estimate for Ω

For Nt ≤ 64:
– Main peak is outside the range of the power spectrum
– Power spectra no longer contain any useful information

Log-likelihood still has a clearly identifiable global maximum at Ω
even for data vectors with as few as 32 data points, provided a non-
uniform sampling is used

For uniform sampling with Nt = 32 the top inset shows that P(ω|d)

has many peaks of approximately equal height due to aliasing effects
(dashed black line)
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Conclusions

Power spectrum Log-likelihood

Many data points and long
signals required

Function sharply peaked
even for very small number
of sample points

regular sampling best Irregular low-discrepancy
sampling strongly preferred

Peak detection easy Peak detection difficult
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