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Classical data over classical channels

QF\X
Y\G

» Finite input alphabet A, output alphabet B.
» Channel input X in A", output Y in B™ (random variables).
> Pr(Y =y|X =2,&) = E"(y|z).
Discrete Memoryless Channel: £"(y|z) = [ € (vi|xi).
> Message @, decoded message Q in [M]:={1,..., M}
> Classical code: Encoder Pr(X = z|Q = q) = F(z|q);
Decoder Pr(Q = ¢|Y =y) = G(q|y).
> M.(E™) :=max M such that 3 code with
Pr(Q # Q\gn, F,G) < € (hard to compute exactly).
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Classical data over classical channels

» Correlated Encoder/Decoder:
PriX =2,Q=4lQ=qY =y) = Z(z,4lq,y)

» Entanglement assisted: Z(z,q|q,y) = Tr Fx(q) QG

» Non-signalling assisted: Z(x, ¢|q,y) is non-signalling.
» MPF(E™) :=max M such that 3 entanglement assisted code

with Pr(Q # Q|E™, Z) < e.
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> Ce(€) == limy_.o0 L log M (EM), C(E) := lime_g CE(E)

» In general, zero-error capacity Cy(E) # C(E).

» Bennett, Shor, Smolin, Thapliyal (2001):
For all DMCs: C¥(€) = C(&) (quant-ph/0106052).
Entanglement doesn’t change capacity. But..

» Entanglement can increase rate for fixed n and € / reduce
error prob. for fixed rate and n
Cubitt, Leung, W.M., Winter: (0911.5300 and 1003.3195)
Demonstration by Resch group at IQC (1010.2566)

» Leung, Mancinska, W.M., Ozols, Roy (1009.1195):
Example of DMC with C(€) = CF(&) > Cy(€).



Motivation: Beyond Capacity

Converse and achievability bounds on the rate %log M (E™)
when € = 1/1000 and £ is the BSC with Pr(bit flip) = 0.11%.
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Motivation: Beyond Capacity

Asymptotics of rate as function of n for DMCs:

%log M(E®™) = C(E) — Q (e) VS:) + O(logn)/n

By Polyanskiy, Poor, Verdi (PPV converse) converse and
achievability results for classical codes which match up to
O(logn)/n.
» Use of entanglement can't change capacity but can give
striking qualitative changes to error behaviour below capacity.

» Goal: Looking beyond zero-error, quantify the extent to which
entanglement improves coding.
» E.g. what does the asymptotic expansion of rate as a function

of n look like after the capacity term with entanglement
assistance?



PPV converse




PPV converse

F\X

Y\GA

» Pxy: PI“(X = CL) = ﬁ Zq F(-T’C_I) =! Dz,
Pr(Y = y|X = z) = E(y[x).




PPV converse

Q- F

R

Y\GQ

> Pxy: Pr(X =a) = 57 3, F(xlq) =: pa,
Pr(Y = y|X =) S(y\w)

» Px X Ry: Pr(X =a) =p;, Pr(Y =y|X =2) =1,




PPV converse

Q- F

Y\

» Pxy: PI“(X = CL) = ﬁ Zq F(-T’C_I) =! Dz,
Pr(Y = y|X = z) = E(y[x).

» Px X Ry: Pr(X =a) =p;, Pr(Y =y|X =2) =1,
» Test T for Pxy: Specifies Pr(pass T|X = z,Y = y).

O




PPV converse

Q- F

Y\

» Pxy: PI“(X = CL) = ﬁ Zq F(-T’C_Z) =! Dz,
Pr(Y = y|X = z) = E(y[x).

» Px X Ry: Pr(X =a) =p;, Pr(Y =y|X =2) =1,

» Test T for Pxy: Specifies Pr(pass T|X = z,Y = y).

» Be(Pxy,Px x Ry): Minimum Pr(pass T|Px x Ry) for all T
with Pr(pass T|Pxy) > 1 —e.

O
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PPV converse
Given (M, €) code for £ with input distribution Px, construct test
T for PXY (VS. PX X Ry):
Pr(pass T'|X =z,Y =y) =Ty := Z G(qly) Pr(Q =¢|X =z, F).
q€[M]
For Px x Ry: Pr(X =x,Y =y) = p,ry, the probability of
passing the test is

S Taypary =Y Glaly)ryp: Pr(Q = ¢|X = 2, F)

z,y T,Y,q

=Y Glgly)ry Pr(Q = g A X = z|F)
z,Y,9

== 3" Glaly)ry Felo)

$7y7q
1
=M Z G(aly)ry
y.q

—1/M.



PPV converse
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1
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PPV converse
If there exists a code of size M with distribution Px for channel
input X, and error prob. ¢, then for all distributions Ry on Y:

1

Be(Pxy,Px x Ry) < U

For all codes of size M and error prob. €

1
i . (Pxvy,P Ry) < —.
T PP P fty) < g
PPV converse:
1

M(W) < MZ(W) := max min
W) < MEW) Px Ry Be(Pxy,Px X Ry)
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Non-signalling assisted codes: Minimum error LP

e M
q € [M] seA

NS(M, €) —lfmax— DD Zw,dla,y)E(ylr)

qe[M] r€AyeB

subject to
Vge[M],yeB:Y Z(xdlgy) =1,Z2>0
:I/‘,qA
Vg, y,q,q Y Z(w,dla,y) = Z(x,4ld,y)
TEA €A

Vo, .0,y 0 Y Z(wdlay) = Y Z(@,dle.y)

Ge[M] Gge[M]
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Let w(q) denote the image of ¢ € [M] under permutation m € Syy.

Zesily) = 55 O 2 m(@)lnla).y)

TeSN

Z is still NS, yields same error prob. and it is symmetric under
simultaneous permutation of ¢ and ¢.
This symmetry is equivalent to Z having the form:

D,, ift¢g=q

Z(x,qlq,y) = {W fita
Ty .

Substitute this form into the LP for the error. ..
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Simplified LP

NS(M, €) —l—maxf Z ZZZQU(J’%

qe M]zeAyeB

Vie[Ml,yeB:> Z(x,qlqy) =1

x?q
Z >0

Vg, u,q,¢ > Z(x,dlg,y) =Y Z(x,dldy)
€A €A

Vo,q .y 0 Y Z(wdlay) = Y Z(x,dla.y)

ge[M] ge[M]
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Simplified LP

NS(M,E):=1— maxz Z D,yE(ylx)

z€AyeB

VyE€B:Y Day+ (M—1)W,y =1

R>0W2>0
VyEB:Y Dyy=Y Wy
€A €A
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Simplified LP

NS(M,E) =1 — maxz Z D,yE(ylx)

reAyeB
subject to
Vy€B: Y Dyy=1/M(=7)
z€A
pr = 1a
€A

VxEA,yGBliyme;
Vo€ A,y € B: Dy, > 0.

14



LP for MY

Can rewrite to find the smallest value of 1/M for a given e:

MNS(£)7! = min~n
Vee A,y € B: Dy <p,

VyGB:ZDIySV
€A

Z ZE(y\x)ny >1—¢

zcAyeB

Zpazzl

T€EA
Vee A,ye B: Dyy >0,p, > 0.
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LP for MY

Can rewrite to find the smallest value of 1/M for a given e:
MNS(£)7! = min~n
Vee A,y € B: Dy <p,

VyGB:ZDIySV
€A

Z Zg(y\x)ny >1—¢

zcAyeB

Zpazzl

€A
Vee A,ye B: Dyy >0,p, > 0.

Also gives a converse for classical codes: M.(£) < MNS(€).
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Equivalence to PPV converse
The PPV converse is

1 . .
MZ(E) = min max min Z Z ToypaTy

r€AyYEB
subject to
DY EWle)Taypr > 1 — €
reAyeB

przlvzryzl
x y

VxEAayEB:pzZOaOSTxySLTyZO
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Equivalence to PPV converse
The PPV converse is

M(E)T = ngn mjin max Z Z TryDary

r€AyYeEB
subject to
Z Z g(y‘x)Tmypa: >1—¢€
zeAyeB

przl,Zryzl
T Yy

VxEAayEB:pzZOaOSTxySLTyZO

By von Neumann’s minimax theorem.
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Equivalence to PPV converse
The PPV converse is

M?(E)™! = minminmax Y Tyyps

p T wyeB =y
subject to
Z Z g(y‘x)Tmypa: >1—¢€
reAyeB

Zp:vzl
x

Vee A,ye B:p, >0,0<T,, <1

By convexity of optimisation over r.
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Equivalence to PPV converse
The PPV converse is

M?(E)~! = min max D
6( ) D.p yel3 Ty

T€EA
subject to
YD EW) Dy =1 —c
reAyeB
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Equivalence to PPV converse
The PPV converse is

M?2(E)™! = miny
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Equivalence to PPV converse
The PPV converse is

M?2(E)™! = miny

D,p
subject to
DD Elr)Dyy =1 —c
reAyeB

D pa=1
x
vxEAayEB:pzZOaOSDIySPQn

yEB:y>Y Dy
TEA

ME(E) = M (€)
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Consequences

All converse results which can be derived from PPV converse apply
to non-signalling and entanglement assisted codes too (for discrete
channels):

» Non-signalling doesn't change capacity for completely general
channels (using result of Verdi and Han).

» Asymptotic expansion of rate unchanged by NS/entanglement
assistance up to O(logn)/n.

Linear program formulation of the PPV converse:

» Dual formulation of LP gives a converse bound for any
feasible point.

» For channels with permutation covariance (e.g. DMCs), LP
can be simplified to size poly(n).
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Dispersionless channels

» Information density: i(a;b) = log

Pr(X=a,Y=b)

r(X=a)Pr(Y=b)"
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Dispersionless channels

» Information density: i(a;b) = log %.

» Capacity C(€) is max. of expectation of information density
over input distributions.

» Dispersion V' (€): Minimum variance of information density for
capacity achieving input distributions.

%log M (E™) = C(E) — Q (e fo) + O(logn)/n

For DMCs
CNS(E)=C(E) = V() =0.
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