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Classical data over classical channels

Q

En

Q̂

F

G

X

Y

I Finite input alphabet A, output alphabet B.

I Channel input X in An, output Y in Bn (random variables).
I Pr(Y = y|X = x, E) = En(y|x).

Discrete Memoryless Channel: En(y|x) =
∏n
i=1 E(yi|xi).

I Message Q, decoded message Q̂ in [M ] := {1, . . . ,M}
I Classical code: Encoder Pr(X = x|Q = q) = F (x|q);

Decoder Pr(Q̂ = q̂|Y = y) = G(q̂|y).
I Mε(En) :=max M such that ∃ code with

Pr(Q 6= Q̂|En, F,G) ≤ ε (hard to compute exactly).
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Classical data over classical channels

Q

En

Q̂

X

Y

I Correlated Encoder/Decoder:
Pr(X = x, Q̂ = q̂|Q = q, Y = y) = Z(x, q̂|q, y)

I Entanglement assisted: Z(x, q̂|q, y) = TrF (q)
x ⊗G(y)

q̂ ρAB
I Non-signalling assisted: Z(x, q̂|q, y) is non-signalling.

I ME
ε (En) :=max M such that ∃ entanglement assisted code

with Pr(Q 6= Q̂|En, Z) ≤ ε.
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Capacity

I Cε(E) := limn→∞
1
n logMε(En), C(E) := limε→0C

Ω
ε (E)

I In general, zero-error capacity C0(E) 6= C(E).

I Bennett, Shor, Smolin, Thapliyal (2001):
For all DMCs: CE(E) = C(E) (quant-ph/0106052).
Entanglement doesn’t change capacity. But..

I Entanglement can increase rate for fixed n and ε / reduce
error prob. for fixed rate and n
Cubitt, Leung, W.M., Winter: (0911.5300 and 1003.3195)
Demonstration by Resch group at IQC (1010.2566)

I Leung, Mancinska, W.M., Ozols, Roy (1009.1195):
Example of DMC with C(E) = CE

0 (E) > C0(E).
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Motivation: Beyond Capacity
Converse and achievability bounds on the rate 1

n logMε(En)
when ε = 1/1000 and E is the BSC with Pr(bit flip) = 0.111.

Beyond Capacity
Blocklength n
log ( n)
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1Polyanskiy, Poor, Verdú. IEEE Trans. Inf. T., 56, 2307-2359 5



Motivation: Beyond Capacity

Asymptotics of rate as function of n for DMCs:

1
n

logMε(E⊗n) = C(E)−Q−1(ε)

√
V (E)
n

+O(log n)/n

By Polyanskiy, Poor, Verdú (PPV converse) converse and
achievability results for classical codes which match up to
O(log n)/n.

I Use of entanglement can’t change capacity but can give
striking qualitative changes to error behaviour below capacity.

I Goal: Looking beyond zero-error, quantify the extent to which
entanglement improves coding.

I E.g. what does the asymptotic expansion of rate as a function
of n look like after the capacity term with entanglement
assistance?
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PPV converse

Q

E

Q̂

F

G

X

Y

I PXY : Pr(X = a) = 1
M

∑
q F (x|q) =: px,

Pr(Y = y|X = x) = E(y|x).

I PX ×RY : Pr(X = a) = px, Pr(Y = y|X = x) = ry.

I Test T for PXY : Specifies Pr(pass T |X = x, Y = y).

I βε(PXY , PX ×RY ): Minimum Pr(pass T |PX ×RY ) for all T
with Pr(pass T |PXY ) ≥ 1− ε.
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PPV converse
Given (M, ε) code for E with input distribution PX , construct test
T for PXY (vs. PX ×RY ):

Pr(pass T |X = x, Y = y) = Txy :=
∑
q∈[M ]

G(q|y) Pr(Q = q|X = x, F ).

For PXY : Pr(X = x, Y = y) = pxE(y|x), the probability of
passing the test is∑

x,y

TxypxE(y|x) =
∑
x,y,q

G(q|y)E(y|x)px Pr(Q = q|X = x, F )

=
∑
x,y,q

G(q|y)E(y|x) Pr(Q = q ∧X = x|F )

=
1
M

∑
x,y,q

G(q|y)E(y|x)F (x|q)

=1− ε.

8



PPV converse
Given (M, ε) code for E with input distribution PX , construct test
T for PXY (vs. PX ×RY ):

Pr(pass T |X = x, Y = y) = Txy :=
∑
q∈[M ]

G(q|y) Pr(Q = q|X = x, F ).

For PXY : Pr(X = x, Y = y) = pxE(y|x), the probability of
passing the test is∑

x,y

TxypxE(y|x) =
∑
x,y,q

G(q|y)E(y|x)px Pr(Q = q|X = x, F )

=
∑
x,y,q

G(q|y)E(y|x) Pr(Q = q ∧X = x|F )

=
1
M

∑
x,y,q

G(q|y)E(y|x)F (x|q)

=1− ε.

8



PPV converse
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T for PXY (vs. PX ×RY ):

Pr(pass T |X = x, Y = y) = Txy :=
∑
q∈[M ]

G(q|y) Pr(Q = q|X = x, F ).

For PX ×RY : Pr(X = x, Y = y) = pxry, the probability of
passing the test is∑

x,y

Txypxry =
∑
x,y,q

G(q|y)rypx Pr(Q = q|X = x, F )

=
∑
x,y,q

G(q|y)ry Pr(Q = q ∧X = x|F )
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M

∑
x,y,q

G(q|y)ryF (x|q)

=
1
M

∑
y,q

G(q|y)ry
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PPV converse

If there exists a code of size M with distribution PX for channel
input X, and error prob. ε, then for all distributions RY on Y :

βε(PXY , PX ×RY ) ≤ 1
M
.

For all codes of size M and error prob. ε

min
PX

max
RY

βε(PXY , PX ×RY ) ≤ 1
M
.

PPV converse:

Mε(W ) ≤M�ε (W ) := max
PX

min
RY

1
βε(PXY , PX ×RY )

10



PPV converse

If there exists a code of size M with distribution PX for channel
input X, and error prob. ε, then for all distributions RY on Y :

βε(PXY , PX ×RY ) ≤ 1
M
.

For all codes of size M and error prob. ε

min
PX

max
RY

βε(PXY , PX ×RY ) ≤ 1
M
.

PPV converse:

Mε(W ) ≤M�ε (W ) := max
PX

min
RY

1
βε(PXY , PX ×RY )

10



PPV converse

If there exists a code of size M with distribution PX for channel
input X, and error prob. ε, then for all distributions RY on Y :

βε(PXY , PX ×RY ) ≤ 1
M
.

For all codes of size M and error prob. ε

min
PX

max
RY

βε(PXY , PX ×RY ) ≤ 1
M
.

PPV converse:

Mε(W ) ≤M�ε (W ) := max
PX

min
RY

1
βε(PXY , PX ×RY )

10



Non-signalling assisted codes: Minimum error LP

q ∈ [M ]

E

q̂ ∈ [M ]

x ∈ A

y ∈ B

εNS(M, E) :=1−max
1
M

∑
q∈[M ]

∑
x∈A

∑
y∈B

Z(x, q|q, y)E(y|x)

subject to

∀q̂ ∈ [M ], y ∈ B :
∑
x,q̂

Z(x, q̂|q, y) = 1, Z ≥ 0

∀q̂, y, q, q′ :
∑
x∈A

Z(x, q̂|q, y) =
∑
x∈A

Z(x, q̂|q′, y)

∀x, q, y, y′ :
∑
q̂∈[M ]

Z(x, q̂|q, y) =
∑
q̂∈[M ]

Z(x, q̂|q, y′)

11



Simplified LP

Let π(q) denote the image of q ∈ [M ] under permutation π ∈ SM .

Z̄(x, q̂|q, y) =
1
M !

∑
π∈SM

Z(x, π(q̂)|π(q), y)

Z̄ is still NS, yields same error prob. and it is symmetric under
simultaneous permutation of q and q̂.
This symmetry is equivalent to Z having the form:

Z̄(x, q̂|q, y) =

{
Dxy if q̂ = q

Wxy if q̂ 6= q.

Substitute this form into the LP for the error. . .

12
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Simplified LP

εNS(M, E) := 1−max
∑
x∈A

∑
y∈B

DxyE(y|x)

subject to

∀y ∈ B :
∑
x∈A

Dxy = 1/M(= γ)∑
x∈A

px = 1,

∀x ∈ A, y ∈ B : Dxy ≥ px,
∀x ∈ A, y ∈ B : Dxy ≥ 0.

14



LP for MNS
ε

Can rewrite to find the smallest value of 1/M for a given ε:

MNS
ε (E)−1 = min γ
∀x ∈ A, y ∈ B : Dxy ≤ px
∀y ∈ B :

∑
x∈A

Dxy ≤ γ∑
x∈A

∑
y∈B
E(y|x)Dxy ≥ 1− ε

∑
x∈A

px = 1

∀x ∈ A, y ∈ B : Dxy ≥ 0, px ≥ 0.

Also gives a converse for classical codes: Mε(E) ≤MNS
ε (E).
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Equivalence to PPV converse

The PPV converse is

M�ε (E)−1 = min
p

max
r

min
T

∑
x∈A

∑
y∈B

Txypxry

subject to∑
x∈A

∑
y∈B
E(y|x)Txypx ≥ 1− ε

∑
x

px = 1,
∑
y

ry = 1

∀x ∈ A, y ∈ B : px ≥ 0, 0 ≤ Txy ≤ 1, ry ≥ 0
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∑
y

ry = 1

∀x ∈ A, y ∈ B : px ≥ 0, 0 ≤ Txy ≤ 1, ry ≥ 0

By von Neumann’s minimax theorem.
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Equivalence to PPV converse

The PPV converse is

M�ε (E)−1 = min
D,p

γ

subject to∑
x∈A

∑
y∈B
E(y|x)Dxy ≥ 1− ε

∑
x

px = 1

∀x ∈ A, y ∈ B : px ≥ 0, 0 ≤ Dxy ≤ px,

y ∈ B : γ ≥
∑
x∈A

Dxy

M�ε (E) = MNS
ε (E)
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Consequences

All converse results which can be derived from PPV converse apply
to non-signalling and entanglement assisted codes too (for discrete
channels):

I Non-signalling doesn’t change capacity for completely general
channels (using result of Verdú and Han).

I Asymptotic expansion of rate unchanged by NS/entanglement
assistance up to O(log n)/n.

Linear program formulation of the PPV converse:

I Dual formulation of LP gives a converse bound for any
feasible point.

I For channels with permutation covariance (e.g. DMCs), LP
can be simplified to size poly(n).
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Dispersionless channels

I Information density: i(a; b) = log Pr(X=a,Y=b)
Pr(X=a) Pr(Y=b) .

I Capacity C(E) is max. of expectation of information density
over input distributions.

I Dispersion V (E): Minimum variance of information density for
capacity achieving input distributions.

1
n

logMε(En) = C(E)−Q−1(ε)

√
V (E)
n

+O(log n)/n

For DMCs
CNS

0 (E) = C(E) ⇐⇒ V (E) = 0.
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Future work

I Use dual LP formulation of converse to improve efficiently
computable finite block length bounds for specific channels.

I Improved bounds for small block lengths by augmenting LP
with certain families of Bell inequalities?

I Non-signalling converse generalises naturally to multi-terminal
coding - investigate applications.
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