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I. LANGEVIN EQUATION IN THE INTERACTION PICTURE

Our model is composed of two cavity modes a1 and a2 and one mechanical mode bm coupling via the optomechanical

forces in the form of
∑

~Gia
†
iai(bm + b†m). This general model can be realized in various experimental systems. For

example, it can be two whispering gallery modes with distinctly different frequencies both coupling with the same
mechanical mode in a microsphere system [1]. It can also involve one microwave cavity mode and one optical cavity
mode coupling with the same mechanical mode [2]. In our discussions in the main paper, we choose arbitrary units for
the parameters so that this general model can be applied to a wide range of systems with very different parameters.
The strong coupling regime studied in this work (see Sec. II) has recently been demonstrated in experiments in the
opto/electro-mechanical system [3, 4].

The total linearized Hamiltonian in the rotating frame is

Hrot =
∑

i=1,2

−~∆ia
†
iai + ~gi(a

†
ibm + b†mai) + ~ωmb

†
mbm +Hdiss (1)

where ∆i = ωdi−ωi is the laser detuning, gi is the effective linear coupling with gi = Giai,ss and ai,ss being the steady
state amplitude of the cavity modes (we assume ai,ss to be real for simplicity of discussion), and Hdiss describes the
system-bath coupling. Here,

Hdiss =
∑

i=1,2

ˆ

dω~(ω − ωdi)b
†
i (ω)bi(ω) + i~

ˆ

dωgi(ω)(a
†
i bi(ω)− b†i (ω)ai)

+

ˆ

dω~ωc†(ω)c(ω) + i~

ˆ

dωgm(ω)(b†mc(ω)− c†(ω)bm) (2)

where bi(ω) (c(ω)) are the bath modes for ai (bm) and gi(ω) (gm(ω)) are the corresponding coupling constants. Here,
the bath Hamiltonian is also in the rotating frame with the frequencies of the cavity bath modes shifted to (ω−ωdi).

For slowly-varying bath spectrum, we assume gi(ω) =
√
κi/2π and gm(ω) =

√
γm/2π in terms of the damping rates.

In the following sections, we study adiabatic quantum state conversion and traveling pulse transmission in the inter-
action picture of the Hamiltonian H0 with

H0 = ~ωm


a†1a1 + a†2a2 + b†mbm +

∑

i=1,2

ˆ

dωb†i (ω)bi(ω) +

ˆ

dωc†(ω)c(ω)


 . (3)

In this interaction picture, our system is thus governed by the Hamiltonian

HI =
∑

i=1,2

−~δia
†
iai + ~gi(a

†
ibm + b†mai) +HI,diss (4)

where δi = ∆i + ωm and HI,diss has the same form as Hdiss with the frequency of the bi(ω) modes replaced by
ω−ωdi −ωm and the frequency of the c(ω) modes replaced by ω−ωm. We choose δi = 0 for the adiabatic scheme in
our discussions in the following sections.

Using the Hamiltonian HI , the time evolution of the system operators can be derived as

iȧi(t) = −δiai(t) + gibm(t) + i

ˆ

dωgi(ω)bi(ω, t), (5a)

iḃm(t) =
∑

i

giai(t) + i

ˆ

dωgm(ω)c(ω, t). (5b)
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The time dependence of the bath operators can be derived as

bi(ω, t) = bi(ω, t0)e
−i(ω−ωi−δi)(t−t0) − gi(ω)

ˆ t

t0

dt′e−i(ω−ωi−δi)(t−t′)ai(t
′), (6a)

c(ω, t) = c(ω, t0)e
−i(ω−ωm)(t−t0) − gm(ω)

ˆ t

t0

dt′e−i(ω−ωm)(t−t′)bm(t′). (6b)

The input operators and the output operators for the cavity modes can then be written as

a
(i)
in (t) =

1√
2π

ˆ

dωbi(ω, t0)e
−i(ω−ωi−δi)(t−t0) (7a)

a
(i)
out(t) =

1√
2π

ˆ

dωbi(ω, t1)e
−i(ω−ωi−δi)(t−t1) (7b)

and the input operator and the output operator for the mechanical mode can be written as

bin(t) =
1√
2π

ˆ

dωc(ω, t0)e
−i(ω−ωm)(t−t0) (8a)

bout(t) =
1√
2π

ˆ

dωc(ω, t1)e
−i(ω−ωm)(t−t1) (8b)

for time t0 < t < t1. With ~v(t) = [a1(t), bm(t), a2(t)]
T and ~vin(t) = [a

(1)
in (t), bin(t), a

(2)
in (t)]T, the Langevin equation in

the interaction picture can be derived using the above results:

id~v(t)/dt =M(t)~v(t) + i
√
K~vin(t) (9)

with the dynamic matrix

M(t) =




−δ1 − iκ1

2 g1(t) 0
g1(t) −iγm

2 g2(t)
0 g2(t) −δ2 − iκ2

2


 (10)

and the diagonal matrix K = diag(κ1, γm, κ2). Similarly, the input-output relations ~vout(t) = ~vin(t) −
√
K~v(t) for

both the cavity modes and the mechanical mode can also be derived.

In the main text and in Sec. III, we choose the time correlations for the above noise operators to be 〈a(i)in (t)a
(i)†
in (t′)〉 =

δ(t − t′) and 〈bin(t)b†in(t′)〉 = (nth + 1)δ(t − t′) with nth being the thermal phonon number. Here, for simplicity of
discussion, we assume the mechanical noise to be Markovian noise with the correlation function being a delta-function
which is valid at high temperature kBT0 ≫ ~ωm for quantum Brownian motion. We want to emphasize that the
specific form of the noise correction function does not affect the main results of this work. For the fidelity of the state
conversion scheme, the form of the noise correlation only affects the term f2 in Eq. (31b) by a numerical factor on
the order of unity.

In our model in Eq. (1), we applied the rotating wave approximation to the system modes to obtain the effective
linear coupling, which requires that ωm ≫ gi. We also applied the rotating wave approximation to the system-bath
coupling terms. In particular, the coupling terms between the mechanical mode and its bath modes are now in the
standard quantum optics form similar to that for a cavity mode, which requires that ωm ≫ γinth and directly results
in the input-output relation derived above for the mechanical mode. This condition can be well satisfied in the strong
coupling regime.

II. MECHANICAL DARK MODE AND THE ADIABATIC CONDITION

We study the adiabatic scheme under the conditions: (1) ∆1 = ∆2 = −ωm (i.e. δi = 0) and (2) κi, γm ≪ g0 with

g0 =
√
g21(t) + g22(t) which is the so-called strong coupling regime in optomechanical systems. We start with the

simple case of zero dampings κi = γm = 0. The eigenmodes of the matrix M(t) are then

ψ1 =



−g2/g0

0
g1/g0


 , ψ2 =

1√
2



g1/g0
−1
g2/g0


 , ψ3 =

1√
2



g1/g0
1

g2/g0


 (11)
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and the eigenvalues for these modes are

λ1 = 0, λ2 = −g0, λ3 = g0. (12)

The mode ψ1 is a mechanical dark mode only involving the two cavity modes. This mode is immune from the
mechanical noise and is also separated from the two other modes by an energy gap g0. The gap protects the mechanical
dark mode from mixing with the two other eigenmodes when the system parameters are adiabatically varied.

Assume that the system is initially prepared in the mechanical dark mode ψ1. As the effective couplings gi(t) are
varied, the eigenmodes evolve with the couplings. From the Landau-Zener theory, when the time-dependence of the
couplings satisfies the adiabatic condition:

∣∣∣∣
~

∆E

dgi
dt

∣∣∣∣ ≪
∆E

~
(13)

with ∆E being the minimum energy separation between the eigenmodes, transitions (mixings) from the initial mode
to the two other modes can be neglected. In our system, ∆E = ~g0 and the adiabatic condition becomes |dgi/dt| ≪ g20 .
In our scheme, we let the coupling g1 be adiabatically increased from zero to g0 and the coupling g2 be adiabatically
varied from −g0 to zero during a total time T . The adiabatic condition hence requires that T ≫ 1/g0. The system
can then be preserved in the mechanical dark mode as the couplings are varied. In realistic systems, to achieve high
fidelity for the state conversion, it also requires that κiT ≪ 1, as will be shown in Sec. III. Hence, the time duration
of this scheme needs to satisfy the condition 1/κi ≫ T ≫ 1/g0. This condition can be realized in the strong coupling
regime in the optomechanical systems [3, 4]. In Fig. 1 in the main paper, we choose the parameters g0 = 5, T = π/2,
and κi ∼ 0.2 in arbitrary units, which satisfy this condition.

Next, we consider finite damping rates but with κi, γm ≪ g0. The damping terms in Eq. (10)

δM = diag(−iκ1/2,−iγm/2,−iκ2/2) (14)

can be treated as perturbation to the eigenmodes in Eq. (11). Using a perturbation theory approach, we derive the
eigenvalues:

λ1 = −i
(
g21
2g20

κ2 +
g22
2g20

κ1

)
(15a)

λ2,3 = ∓g0 − i

(
γm
4

+
g21
4g20

κ1 +
g22
4g20

κ2

)
(15b)

to the first order of the perturbation. The energy separations between these modes are not significantly affected by
the perturbation, and hence the adiabatic condition remains unaffected. The mechanical dark mode becomes

ψ1 =
[
− g2

g0
, − i(κ1−κ2)

2g0

g1g2
g2

0

, g1
g0

]T

(16)

which contains a first-order component from the mechanical mode proportional to κi/g0. Hence, the mechanical dark
mode is not totally “dark” any more. The thermal noise of the mechanical mode can generate a small effect on the
adiabatic quantum state conversion process through this component which will be discussed in Sec. III.

Another factor to consider is the offset in laser detunings. Assume small offsets δ1 = ∆1 + ωm and δ2 = ∆2 + ωm

with |δ1,2| ≪ g0. We treat the offsets also as perturbation to the eigenmodes in addition to the damping terms with

δM = diag(−δ1 − iκ1/2,−iγm/2,−δ2 − iκ2/2). (17)

The eigenvalues are now

λ1 = −i
(
g21
2g20

κ2 +
g22
2g20

κ1

)
−
(
g21
g20
δ2 +

g22
g20
δ1

)
(18a)

λ2,3 = ∓g0 − i

(
γm
4

+
g21
4g20

κ1 +
g22
4g20

κ2

)
−
(
g21
2g20

δ1 +
g22
2g20

δ2

)
(18b)

and the mechanical dark mode becomes

ψ1 =
[
− g2

g0
, −

(
i(κ1−κ2)

2g0
+ (δ1−δ2)

g0

)
g1g2
g2

0

, g1
g0

]T

(19)



4

including an extra term proportional to δi/g0 from the mechanical component when compared with Eq. (16). The
effect of the detuning offsets on the quantum state conversion can be studied following the same approach as is used
in studying the effect of the damping terms. In fact, to add the contribution of the detuning offsets to the conversion
fidelity, one can simply replace the [(κ1 − κ2)/2g0]

2 factor in Eq. (31b) (see Sec. III) by the factor

[(κ1 − κ2)/2g0]
2 + [(δ1 − δ2)/g0]

2. (20)

In our discussions in Sec. III, IV, V, we let δi = 0 for simplicity.

A. Strong damping and (or) large detuning offset limit

The proposed adiabatic scheme does not work in the regime of strong damping rates and (or) large detuning offsets
when κi, |δi| ≫ g0. In this regime, we treat the effective couplings as perturbation term, while treat the δM term in
Eq. (17) as the non-perturbed Hamiltonian. At gi = 0, the eigenmodes of δM are ψ1 = a1, ψ2 = bm, and ψ3 = a2,
with the corresponding eigenvalues

λ1 = −δ1 − iκ1/2, λ2 = −iγm/2, λ3 = −δ2 − iκ2/2. (21)

At small effective couplings gi, we apply a perturbation theory approach to derive the eigenmodes:

ψ1 =




1
2ig1

(κ1−2iδ1−γm)

0


 , ψ2 =



− 2ig1

(κ1−2iδ1−γm)

1

− 2ig2
(κ2−2iδ2−γm)


 , ψ3 =




0
2ig2

(κ2−2iδ2−γm)

1


 , (22)

which include small deviations from the non-perturbed eigenmodes to the first order of the effective couplings. Hence,
the adiabatic scheme cannot convert one cavity mode to the other by varying the couplings. Quantum states cannot
be converted between the cavities using the adiabatic scheme in this limit.

B. Raman-like scheme

In the proposed scheme, we choose −∆i = ωm. A different situation is for |ωm +∆i| ≫ g0 but still under the
two-photon resonance condition ∆1 = ∆2. The matrix M(t) is then

M(t) =




−∆− iκ1

2 g1(t) 0
g1(t) −iγm

2 g2(t)
0 g2(t) −∆− iκ2

2


 (23)

with ∆ = ωm +∆i. The transitions between the cavity modes and the mechanical mode are suppressed by the large
energy difference |∆| in the diagonal matrix elements of M(t). With κi ≪ g0, the two cavity modes are connected

by an effective Rabi coupling in the form of
(
ΩRa

†
1a2 +Ω⋆

Ra
†
2a1

)
with ΩR ≈ −g1g2/ |∆|. This can be derived by

eliminating the mechanical mode from the total system. Quantum state conversion between the two cavity modes
can then be realized via a Rabi flip using this effective Rabi coupling.

III. FIDELITY FOR GAUSSIAN STATES

Solving the Langevin equation in the adiabatic limit, we derive

~α(t) = e−i
´

t

0
dt′Λ(t′)~α(0) +

ˆ t

0

dt′e−i
´

t

t′
dt′′Λ(t′′)~β(t′) (24)

with ~α(t) = U−1~v(t), ~β(t) = U−1
√
K~vin(t), and U = [ψ1, ψ2, ψ3]. At time t = 0 with g1 = 0,

U−1(0) ≈




1 0 0

0 −1/
√
2 −1/

√
2

0 1/
√
2 −1/

√
2


 (25)
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after neglecting the small terms due to the dampings, and [~α(0)]1 = a1(0). The damping terms only generate small
corrections in the 2× 2 block for the operators bm and a2, and do not affect [~α(0)]1. At time t = T with g2 = 0, we
have

U−1(T ) =




0 0 1

1/
√
2 −1/

√
2 0

1/
√
2 1/

√
2 0


 (26)

after neglecting the small terms due to the dampings, and [~α(T )]1 = a2(T ). Again, the damping terms only generate
small corrections in the 2 × 2 block at the lower-left corner and do not affect [~α(T )]1. At an intermediate time
0 < t < T , the matrix U−1(t) contains terms that mix the cavity modes with the mechanical mode to the first order
of the damping rates. Using Eq. (24), we derive

a2(T ) = e−f(0,T )a1(0) +

ˆ T

0

dt′e−f(t′,T )β1(t
′) (27)

with the function

f(t, T ) = i

ˆ T

t

dt′λ1(t
′) =

ˆ T

t

dt′
(
g21(t

′)

2g20
κ2 +

g22(t
′)

2g20
κ1

)
, (28)

and the noise operator

β1(t) =
g2
g0

√
κ1a

(1)
in (t) +

i(κ1 − κ2)g1g2
2g30

√
γmbin(t) +

g1
g0

√
κ2a

(2)
in (t) (29)

which contains a contribution from the mechanical noise bin(t) in the first-order of κi/g0.

Let the covariances of two operators A and B be cov(A,B) = 〈AB〉−〈A〉〈B〉. The covariances of the system operators

can be derived from Eq. (27). For the operators a†2 and a2, we derive

cov (a2(T )a2(T )) = e−2f(0,T )cov (a1(0)a1(0)) (30a)

cov
(
a2(T )a

†
2(T )

)
= e−2f(0,T )cov

(
a1(0)a

†
1(0)

)
+ f1 (30b)

cov
(
a†2(T )a2(T )

)
= e−2f(0,T )cov

(
a†1(0)a1(0)

)
+ f2 (30c)

cov
(
a†2(T )a

†
2(T )

)
= e−2f(0,T )cov(a†1(0)a

†
1(0)) (30d)

with the functions

f1 =

ˆ T

0

dt′e−2f(t′,T )

(
g21(t

′)

g20
κ2 +

g22(t
′)

g20
κ1

)
+ f2 (nth + 1) /nth (31a)

f2 =

ˆ T

0

dt′e−2f(t′,T )

[
(κ1 − κ2)

2g0

]2
g21(t

′)

g20

g22(t
′)

g20
γmnth. (31b)

Using Eqs. (30a, 30b, 30c, 30d), we can derive the covariance matrix for the quadrature variables as defined in [5].

The fidelity of the quantum state conversion is defined in the main text. For gaussian states, the conversion fidelity
can be calculated analytically using the covariance matrix for the quadrature variables. Here, we consider the squeezed

states D(α) exp(12 (ǫ
⋆a21 − ǫ(a†1)

2))|0〉 initially prepared in cavity mode a1, where ǫ = r exp(2iφ), r is the squeezing the

parameter, α is the coherent amplitude of state, and D(α) is the shift operator with D†(α)a1D(α) = a1 +α. For this

state, 〈a†1a1〉 = α⋆α+ sinh2 r. We also define q0 = (α+ α⋆)/
√
2, p0 = (α− α⋆)/

√
2i with q20 + p20 = 2|α|2. As studied

in [5], the conversion fidelity can be written as F = F1F2 with

F1 =
2√

(f1 + f2)2 + (e−2f(0,T ) + 1)2 + 2(f1 + f2)(e−2f(0,T ) + 1) cosh(2r)
(32a)

F2 = exp


−

(
1− e−f(0,T )

)2 [
2 |α|2 (f1 + f2) + (1 + e−2f(0,T ))y(α, r)

]

(f1 + f2)2 + (e−2f(0,T ) + 1)2 + 2(f1 + f2)(e−2f(0,T ) + 1) cosh(2r)


 . (32b)
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To the lowest order of the damping rates (first order for F1 and second order for F2),

F1 ≈ 1− f(0, T )(cosh(2r) − 1)− fs cosh(2r) (33a)

F2 ≈ 1− f2(0, T )y(α, r)/2 (33b)

with the function fs = f2 (2nth + 1) /2nth and

y(α, r) = 2|α|2 cosh2(2r) + (q20 − p20) cos(2φ) sinh
2(2r) − 2p0q0 sin(2φ) sinh

2(2r) (34)

which depends on the coherent amplitude α and α⋆ quadratically. For a coherent state |α〉 (at r = 0), F1 ≈ 1 − fs
and F2 ≈ 1− f(0, T )2 |α|2.

IV. TRANSMISSION OF TRAVELING PHOTON PULSES

Photon transmission can be realized in our system via the optomechanical couplings. First, we consider the situation of
time-independent effective couplings, i.e. gi is a constant during the photon transmission. Here, the Langevin equation
can be solved in the frequency domain. For an arbitrary operator ô(t), we can write its frequency components as

ô(ω) =

ˆ

dt√
2π
ô(t)eiωt. (35)

The Langevin equation in Eq. (9) can be transformed to the frequency domain as

~v(ω) = i (Iω −M)−1
√
K~vin(ω). (36)

Together with the input-output relation, we derive that ~vout(ω) = T̂ (ω)~vin(ω) with the transmission matrix T̂ (ω) =

(I − i
√
K(Iω −M)−1

√
K). Note that in the interaction picture defined in Sec. I, the input and output operators in

Eqs. (7a, 7b) can be rewritten as

a
(i)
in (t) =

1√
2π

ˆ

dω
[
bi(ω + ωi, t0)e

iωt0
]
e−iωt (37a)

a
(i)
out(t) =

1√
2π

ˆ

dω
[
bi(ω + ωi, t1)e

iωt1
]
e−iωt (37b)

which give the frequency components a
(i)
in (ω) = bi(ω + ωi, t0)e

iωt0 and a
(i)
out(ω) = bi(ω + ωi, t1)e

iωt1 , clearly defined
relative to the cavity resonances.

The output operator a
(2)
out(ω) can then be expressed as

a
(2)
out(ω) = T̂31(ω)a

(1)
in (ω) + T̂32(ω)bin(ω) + T̂33(ω)a

(2)
in (ω) (38)

in terms of the frequency components of the input operators. To transmit the input a
(1)
in (ω) to the output a

(2)
out(ω),

two conditions need to be satisfied: 1. the information in a
(1)
in (ω) can be accurately transmitted to cavity a2; and 2.

the noise in a
(2)
in (ω) and bin(ω) can be effectively blocked from entering cavity a2. The first condition requires that

the transmission matrix element T̂31(ω) → 1 and the second condition requires that the transmission matrix elements

T̂32(ω), T̂33(ω) → 0. It can be shown that the transmission matrix T̂ is a unitary matrix with T̂−1 = T̂ †. Hence, the
above two conditions are intrinsically correlated with each other.

The transmission matrix element T̂31(ω) can be derived as

T̂31(ω) =
ig1g2

√
κ1κ2

g22(ω + iκ1

2 ) + g21(ω + iκ2

2 )− (ω + iκ1

2 )(ω + iκ2

2 )(ω + iγm

2 )
. (39)

At ω = 0, this equation gives

T̂31(0) = 8g1g2
√
κ1κ2/

(
4g21κ2 + 4g22κ1 + γmκ1κ2

)
, (40)
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which reaches maximum at the optimal transmission condition g21κ2 = g22κ1. With γm ≪ g0, we have

max(T̂31(0)) =
1

1 + γm
√
κ1κ2/8g1g2

≈ 1. (41)

The transmission of noise, on the other hand, is determined by the matrix elements T̂32(ω) and T̂33(ω). It can be

shown that T̂32(ω), T̂33(ω) → 0 at ω → 0. For example,

T̂32(ω) =
ig2

√
γmκ2(ω + iκ1

2 )

g22(ω + iκ1

2 ) + g21(ω + iκ2

2 )− (ω + iκ1

2 )(ω + iκ2

2 )(ω + iγm

2 )
, (42)

which gives the ratio

T̂32(0)

T̂31(0)
=
i
√
γmκ1

2g1
→ 0. (43)

Another important feature of the transmission matrix element is the transmission half-width ∆ω which can be defined

using the relation: |T̂31(∆ω)| = |T̂31(0)|/2. In Eq. (39), we can see that the half-width is on the same order of
magnitude as the cavity damping rates with ∆ω ∼ κi ≪ gi. Using this observation, we derive the half-width as

∆ω ≈
√
3(g21κ2 + g22κ1 + γmκ1κ2/4)

2(g21 + g22)
. (44)

Given the above results, input components at |ω| ≪ ∆ω can be transmitted with high fidelity, where a
(2)
out(ω) ≈ a

(1)
in (ω)

with T̂31(ω) → 1 and T̂32(ω), T̂33(ω) → 0. Hence, for quantum input pulses that have spectral width σω much narrower
than the transmission half-width σω ≪ ∆ω, the quantum pulses can be transmitted to the output channel with high
fidelity.

The average of output frequency components 〈a(2)out(ω)〉 can be expressed in terms of the average of the input frequency

components 〈a(1)in (ω)〉 as 〈a(2)out(ω)〉 = T̂31(ω)〈a(1)in (ω)〉 with the noise operators 〈a(2)in (ω)〉 = 〈bin(ω)〉 = 0. Hence, the
output pulse shape is

〈
a
(2)
out(t)

〉
=

ˆ

dω√
2π
T̂31(ω)

〈
a
(1)
in (ω)

〉
e−iωt. (45)

The pulse fidelity can be defined as

Fp =

∣∣∣
´

dt〈a(1)in (t)〉〈a(2)out(t)〉⋆
∣∣∣
2

´

dt
∣∣∣〈a(1)in (t)〉

∣∣∣
2
´

dt
∣∣∣〈a(2)out(t)〉

∣∣∣
2 (46)

which compares the input and the output pulse shapes. This expression is equivalent to

Fp =

∣∣∣
´

dω〈a(1)in (ω)〉〈a(2)out(ω)〉⋆
∣∣∣
2

´

dω
∣∣∣〈a(1)in (ω)〉

∣∣∣
2
´

dω
∣∣∣〈a(2)out(ω)〉

∣∣∣
2 , (47)

when written in terms of the frequency components. The above pulse fidelity only reaches Fp = 1 at 〈a(1)in (ω)〉 =

c〈a(2)out(ω)〉 with c being a constant number. In our system, with T̂31(ω) → 1 as ω → 0 at the optimal transmission

condition, which gives c → 1. The pulse fidelity is determined solely by the property of the matrix element T̂31(ω)

which is intrinsically correlated with the other matrix elements T̂32(ω), T̂33(ω). When high pulse fidelity is achieved,

it indicates T̂31(ω) → 1, and hence T̂32(ω), T̂33(ω) → 0. Thus, high pulse fidelity clearly indicates the possibility of
high-fidelity in the transmission of traveling quantum pulses in this system.



8

V. PULSE ENGINEERING IN THE OUTPUT CHANNEL

With time-dependent couplings gi(t), the output pulse can be manipulated and the output pulse shape can be
engineered. Given the Eq. (24) for adiabatically adjusted couplings and the input-output relation ~vout(t) − ~vin(t) =

−
√
K~v(t), the time-dependence of the output operators can be derived. By applying the transformation U(t) (as

defined in Sec. II) to Eq. (24), we have

~vout(t) = ~vin(t)−
√
KU(t)e−i

´

t

0
dt′Λ(t′)U−1(0)~v(0)−

ˆ t

0

dt′
√
KU(t)e−i

´

t

t′
dt′′Λ(t′′)U−1(t′)

√
K~vin(t

′) (48)

where ~v(0) is the initial condition for the system modes. The output operators at time t depend on the input operators
at all earlier times 0 ≤ t′ ≤ t. In the adiabatic limit with slowly varying gi(t), the contributions that contain the

fast oscillating terms e−i
´

dt′λ2,3 can be neglected. Consider the case of g1(0) = 0 and g2(0) = −g0 where the above
equation does not contain a2(0) and bm(0) terms. It can be shown that

a
(2)
out(t) = a

(2)
in (t)−

√
κ2g1(t)

g0(t)
e−f(0,t)a1(0)−

√
κ2g1(t)

g0(t)

ˆ t

0

dt′e−f(t′,t)

√
κ2g1(t

′)a
(2)
in (t′) +

√
κ1g2(t

′)a
(1)
in (t′)

g0(t)′

+

√
κ2g1(t)

2g0(t)

ˆ t

0

dt′e−f(t′,t) i
√
γmg1(t

′)g2(t
′)bin(t

′)(κ1 − κ2)

g0(t′)3
(49)

which includes contributions from the input pulse and the noise operators. It is interesting to note that in the adiabatic
limit, the contribution from the mechanical noise bin(t) is again suppressed by the small ratio (κ1 − κ2)/g0, similar
to that in Eq. (27).

To demonstrate the idea of pulse engineering, we consider the simple example of the output pulse shape. With

〈a(2)in (t)〉 = 〈bin(t)〉 = 0 and 〈~v(0)〉 = 0, the output pulse shape can be expressed as

〈a(2)out(t)〉 =
√
κ2κ1

ˆ t

0

dt′e−f(t′,t) g1(t)

g0(t)

g2(t
′)

g0(t′)

〈
a
(1)
in (t′)

〉
(50)

which is an integral function of the input pulse shape
〈
a
(1)
in (t)

〉
and the time-dependent couplings. By varying the

time-dependence of gi(t), the output pulse shape can be manipulated in a wide range.
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