Qudit versions of the $\pi / 8$ gate: Applications in fault-tolerant QC and nonlocality

Mark Howard ${ }^{1}$ \& Jiri Vala ${ }^{1,2}$
October 2012
${ }^{1}$ National University of Ireland, Maynooth, Ireland.
${ }^{2}$ Dublin Institute for Advanced Studies, Dublin, Ireland.

IRC Empower Fellowship \& SFI Grant No. 10/IN.1/I3013

The $U_{\pi / 8}$ gate and its uses

- $\mathrm{UQC}=\left\langle\right.$ Cliffords, $\left.U_{\pi / 8}\right\rangle$
 UQC $\neq\langle$ Cliffords \rangle

$$
U_{\pi / 8}=\left(\begin{array}{cc}
e^{-i \frac{\pi}{8}} & 0 \\
0 & e^{i \frac{\pi}{8}}
\end{array}\right) \propto\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \frac{\pi}{4}}
\end{array}\right)
$$

The $U_{\pi / 8}$ gate and its uses

- $\mathrm{UQC}=\left\langle\right.$ Cliffords, $\left.U_{\pi / 8}\right\rangle$ UQC $\neq\langle$ Cliffords \rangle

- Teleportation-based UQC

$$
U_{\pi / 8}=\left(\begin{array}{cc}
e^{-i \frac{\pi}{8}} & 0 \\
0 & e^{i \frac{\pi}{8}}
\end{array}\right) \propto\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \frac{\pi}{4}}
\end{array}\right)
$$

\square

D. Gottesman and I. L. Chuang,

Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations Nature 402, 6760 pp. 390-393, (1999).

The $U_{\pi / 8}$ gate and its uses

- $\mathrm{UQC}=\left\langle\right.$ Cliffords, $\left.U_{\pi / 8}\right\rangle$ UQC $\neq\langle$ Cliffords \rangle
- Teleportation-based UQC
- Transversal for R-M codes

$$
U_{\pi / 8}=\left(\begin{array}{cc}
e^{-i \frac{\pi}{8}} & 0 \\
0 & e^{i \frac{\pi}{8}}
\end{array}\right) \propto\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \frac{\pi}{4}}
\end{array}\right)
$$

\square

B. Zeng, H. Chung, A. Cross and I. Chuang,

Local unitary versus local Clifford equivalence of stabilizer and graph states, Phys. Rev. A 75, 032325 (2007).

The $U_{\pi / 8}$ gate and its uses

- $\mathrm{UQC}=\left\langle\right.$ Cliffords, $\left.U_{\pi / 8}\right\rangle$ UQC $\neq\langle$ Cliffords \rangle
- Teleportation-based UQC
- Transversal for R-M codes
- Topological Protection (3D)

$$
U_{\pi / 8}=\left(\begin{array}{cc}
e^{-i \frac{\pi}{8}} & 0 \\
0 & e^{i \frac{\pi}{8}}
\end{array}\right) \propto\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \frac{\pi}{4}}
\end{array}\right)
$$

The $U_{\pi / 8}$ gate and its uses

- $\mathrm{UQC}=\left\langle\right.$ Cliffords, $\left.U_{\pi / 8}\right\rangle$ UQC $\neq\langle$ Cliffords \rangle
- Teleportation-based UQC
- Transversal for R-M codes
- Topological Protection (3D)
- Secure assisted UQC

\square

A. M. Childs,

Secure assisted quantum computation

The $U_{\pi / 8}$ gate and its uses

- $\mathrm{UQC}=\left\langle\right.$ Cliffords, $\left.U_{\pi / 8}\right\rangle$ UQC $\neq\langle$ Cliffords \rangle
- Teleportation-based UQC
- Transversal for R-M codes
- Topological Protection (3D)
- Secure assisted UQC

$$
U_{\pi / 8}=\left(\begin{array}{cc}
e^{-i \frac{\pi}{8}} & 0 \\
0 & e^{i \frac{\pi}{8}}
\end{array}\right) \propto\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \frac{\pi}{4}}
\end{array}\right)
$$

- Measurement-based UQC with graph states

\squareM. Silva, V. Danos, E. Kashefi and H. Ollivier,

A direct approach to fault-tolerance in measurement-based quantum computation via teleportation New Journal of Physics 9, 6 pp. 192, (2007).

The $U_{\pi / 8}$ gate and its uses

- $\mathrm{UQC}=\left\langle\right.$ Cliffords, $\left.U_{\pi / 8}\right\rangle$ UQC $\neq\langle$ Cliffords \rangle
- Teleportation-based UQC
- Transversal for R-M codes
- Topological Protection (3D)
- Secure assisted UQC

$$
U_{\pi / 8}=\left(\begin{array}{cc}
e^{-i \frac{\pi}{8}} & 0 \\
0 & e^{i \frac{\pi}{8}}
\end{array}\right) \propto\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \frac{\pi}{4}}
\end{array}\right)
$$

- Measurement-based UQC with graph states
- Optimal CHSH game with $(|00\rangle+|11\rangle) / \sqrt{2}$

\squareM. Howard and J. Vala,

Nonlocality as a benchmark for universal quantum computation in Ising anyon topological quantum computers, Phys. Rev. A 85, 022304 (2012).

The $U_{\pi / 8}$ gate and its uses

- $\mathrm{UQC}=\left\langle\right.$ Cliffords, $\left.U_{\pi / 8}\right\rangle$ UQC $\neq\langle$ Cliffords \rangle
- Teleportation-based UQC
- Transversal for R-M codes
- Topological Protection (3D)
- Secure assisted UQC

$$
U_{\pi / 8}=\left(\begin{array}{cc}
e^{-i \frac{\pi}{8}} & 0 \\
0 & e^{i \frac{\pi}{8}}
\end{array}\right) \propto\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \frac{\pi}{4}}
\end{array}\right)
$$

- Measurement-based UQC with graph states
- Optimal CHSH game with $(|00\rangle+|11\rangle) / \sqrt{2}$
- Blind UQC

\square
A. Broadbent, J. Fitzsimons and E. Kashefi,

Universal blind quantum computation,

Structure of Pauli/Clifford groups

D. Gottesman and I. L. Chuang,

Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations Nature 402, 6760 pp. 390-393, (1999).

Structure of Pauli/Clifford groups

We will focus on single, p-level particles

- Generalized $\sigma_{x} / \sigma_{z}: X|j\rangle=|j+1 \bmod p\rangle$

$$
Z|j\rangle=\omega^{j}|j\rangle \quad\left(\omega=e^{2 \pi i / p}\right)
$$

- Displacement operators, $D_{(x \mid z)}=\omega^{2^{-1} x z} X^{x} Z^{z}$, form Pauli group \mathcal{G}

\square
D. Gottesman and I. L. Chuang,

Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations Nature 402, 6760 pp. 390-393, (1999).

Single-Qudit Clifford Gates

$$
\mathcal{C}=\left\{C_{(F \mid \vec{\chi})} \mid F \in S L\left(2, \mathbb{Z}_{p}\right), \vec{\chi} \in \mathbb{Z}_{p}^{2}\right\}
$$

- $F=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ with unit determinant. $\vec{\chi}=\binom{x}{z}$ is a vector of length 2 .
- All elements of $F, \vec{\chi}$ are from $\mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$
- Explicit recipe for constructing a Clifford unitary (where $\tau=\omega^{2^{-1}}$):

$$
\begin{aligned}
& C_{(F \mid \vec{\chi})}=D_{(x \mid z)} V_{F} \\
& V_{F}= \begin{cases}\frac{1}{\sqrt{p}} \sum_{j, k=0}^{p-1} \tau^{\beta^{-1}\left(\alpha k^{2}-2 j k+\delta j^{2}\right)}|j\rangle\langle k| & \beta \neq 0 \\
\sum_{k=0}^{p-1} \tau^{\alpha \gamma k^{2}}|\alpha k\rangle\langle k| & \beta=0 .\end{cases}
\end{aligned}
$$D. M. Appleby,

Properties of the extended Clifford group with applications to SIC-POVMs and MUBs, arXiv:quant-ph/0909.5233, (2009).

Single-Qudit Clifford Gates

$$
\mathcal{C}=\left\{C_{(F \mid \vec{\chi})} \mid F \in S L\left(2, \mathbb{Z}_{p}\right), \vec{\chi} \in \mathbb{Z}_{p}^{2}\right\}
$$

- $F=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ with unit determinant. $\vec{\chi}=\binom{x}{z}$ is a vector of length 2 .
- All elements of $F, \vec{\chi}$ are from $\mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$
- Explicit recipe for constructing a Clifford unitary (where $\tau=\omega^{2^{-1}}$):

$$
\begin{aligned}
& C_{(F \mid \vec{\chi})}=D_{(x \mid z)} V_{F} \\
& V_{F}= \begin{cases}\frac{1}{\sqrt{p}} \sum_{j, k=0}^{p-1} \tau^{\beta^{-1}\left(\alpha k^{2}-2 j k+\delta j^{2}\right)}|j\rangle\langle k| & \beta \neq 0 \\
\sum_{k=0}^{p-1} \tau^{\alpha \gamma k^{2}}|\alpha k\rangle\langle k| & \beta=0\end{cases}
\end{aligned}
$$D. M. Appleby,

Properties of the extended Clifford group with applications to SIC-POVMs and MUBs, arXiv:quant-ph/0909.5233, (2009).

$$
C_{\left(\left.\left[\begin{array}{ll}
1 & 0 \\
\gamma & 1
\end{array}\right] \right\rvert\,\left[\begin{array}{l}
x \\
z
\end{array}\right]\right), ~}^{\text {a }}
$$

Single-Qudit Clifford Gates

$$
\mathcal{C}=\left\{C_{(F \mid \vec{\chi})} \mid F \in S L\left(2, \mathbb{Z}_{p}\right), \vec{\chi} \in \mathbb{Z}_{p}^{2}\right\}
$$

- $F=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ with unit determinant. $\vec{\chi}=\binom{x}{z}$ is a vector of length 2 .
- All elements of $F, \vec{\chi}$ are from $\mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$
- Explicit recipe for constructing a Clifford unitary (where $\tau=\omega^{2^{-1}}$):

$$
\begin{aligned}
& C_{(F \mid \vec{\chi})}=D_{(x \mid z)} V_{F} \\
& V_{F}= \begin{cases}\frac{1}{\sqrt{p}} \sum_{j, k=0}^{p-1} \tau^{\beta^{-1}\left(\alpha k^{2}-2 j k+\delta j^{2}\right)}|j\rangle\langle k| & \beta \neq 0 \\
\sum_{k=0}^{p-1} \tau^{\alpha \gamma k^{2}}|\alpha k\rangle\langle k| & \beta=0\end{cases}
\end{aligned}
$$D. M. Appleby,

Properties of the extended Clifford group with applications to SIC-POVMs and MUBs, arXiv:quant-ph/0909.5233, (2009).

$$
\begin{array}{r}
C_{\left(\left.\left[\begin{array}{ll}
1 & 0 \\
\gamma & 1
\end{array}\right] \right\rvert\,\left[\begin{array}{l}
x \\
z
\end{array}\right]\right)} \in \mathrm{SU}(p) \quad \forall p>3, \\
\operatorname{det}\left(C_{\left.\left(\left.\left[\begin{array}{ll}
1 & 0 \\
\gamma & 1
\end{array}\right] \right\rvert\,\left[\begin{array}{l}
x \\
z
\end{array}\right]\right)\right)=\tau^{2 \gamma} \text { for } p=3,},\right.
\end{array}
$$

U_{v} as qudit version of $U_{\pi / 8}$

Define $\quad U_{v}=U\left(v_{0}, v_{1}, \ldots\right)=\sum_{k=0}^{p-1} \omega^{v_{k}}|k\rangle\langle k| \quad\left(v_{k} \in \mathbb{Z}_{p}\right)$

U_{v} as qudit version of $U_{\pi / 8}$

Define $\quad U_{v}=U\left(v_{0}, v_{1}, \ldots\right)=\sum_{k=0}^{p-1} \omega^{v_{k}}|k\rangle\langle k| \quad\left(v_{k} \in \mathbb{Z}_{p}\right)$

Easy to show

$$
U_{v} D_{(x \mid z)} U_{v}^{\dagger}=D_{(x \mid z)} \sum_{k} \omega^{\left(v_{k+x}-v_{k}\right)}|k\rangle\langle k|
$$

and in particular

$$
U_{v} D_{(1 \mid 0)} U_{v}^{\dagger}=D_{(1 \mid 0)} \sum_{k} \omega^{\left(v_{k+1}-v_{k}\right)}|k\rangle\langle k| *
$$

U_{v} as qudit version of $U_{\pi / 8}$

Define $\quad U_{v}=U\left(v_{0}, v_{1}, \ldots\right)=\sum_{k=0}^{p-1} \omega^{v_{k}}|k\rangle\langle k| \quad\left(v_{k} \in \mathbb{Z}_{p}\right)$

Easy to show

$$
U_{v} D_{(x \mid z)} U_{v}^{\dagger}=D_{(x \mid z)} \sum_{k} \omega^{\left(v_{k+x}-v_{k}\right)}|k\rangle\langle k|
$$

and in particular

$$
U_{v} D_{(1 \mid 0)} U_{v}^{\dagger}=D_{(1 \mid 0)} \sum_{k} \omega^{\left(v_{k+1}-v_{k}\right)}|k\rangle\langle k| *
$$

Must have $U_{v} D_{(1 \mid 0)} U_{v}^{\dagger}=\omega^{\epsilon^{\prime}} C\left(\left.\left[\begin{array}{cc}1 & 0 \\ \gamma^{\prime} & 1\end{array}\right] \right\rvert\,\left[\begin{array}{c}1 \\ z^{\prime}\end{array}\right]\right)$

$$
=\omega^{\epsilon^{\prime}} D_{\left(1 \mid z^{\prime}\right)} \sum_{k=0}^{p-1} \tau^{\gamma^{\prime} k^{2}}|k\rangle\left\langle\left. k\right|^{* *}\right.
$$

U_{v} as qudit version of $U_{\pi / 8}$

Define $\quad U_{v}=U\left(v_{0}, v_{1}, \ldots\right)=\sum_{k=0}^{p-1} \omega^{v_{k}}|k\rangle\langle k| \quad\left(v_{k} \in \mathbb{Z}_{p}\right)$

Easy to show

$$
U_{v} D_{(x \mid z)} U_{v}^{\dagger}=D_{(x \mid z)} \sum_{k} \omega^{\left(v_{k+x}-v_{k}\right)}|k\rangle\langle k|
$$

and in particular

$$
U_{v} D_{(1 \mid 0)} U_{v}^{\dagger}=D_{(1 \mid 0)} \sum_{k} \omega^{\left(v_{k+1}-v_{k}\right)}|k\rangle\langle k| *
$$

Must have $U_{v} D_{(1 \mid 0)} U_{v}^{\dagger}=\omega^{\epsilon^{\prime}} C_{\left(\left.\left[\begin{array}{cc}1 & 0 \\ \gamma^{\prime} & 1\end{array}\right] \right\rvert\,\left[\begin{array}{c}1 \\ z^{\prime}\end{array}\right]\right)}$

$$
=\omega^{\epsilon^{\prime}} D_{\left(1 \mid z^{\prime}\right)} \sum_{k=0}^{p-1} \tau^{\gamma^{\prime} k^{2}}|k\rangle\left\langle\left. k\right|^{* *}\right.
$$

Equating * and ${ }^{* *}: \quad \omega^{v_{k+1}-v_{k}}=\omega^{\epsilon^{\prime}} \tau^{z^{\prime}} \omega^{k z^{\prime}} \tau^{k^{2} \gamma^{\prime}} \quad\left(\forall k \in \mathbb{Z}_{p}\right)$,

$$
\Rightarrow v_{k}=12^{-1} k\left(\gamma^{\prime}+k\left(6 z^{\prime}+(2 k-3) \gamma^{\prime}\right)+k \epsilon^{\prime} \quad\left(v_{0}=0\right)\right.
$$

U_{v} as qudit version of $U_{\pi / 8}$
 ($p=3$)

$$
\begin{gathered}
\text { For } p=3: \quad \operatorname{det}\left(\zeta^{2 \gamma^{\prime}} C\left(\left.\left[\begin{array}{cc}
1 & 0 \\
\gamma^{\prime} & 1
\end{array}\right] \right\rvert\,\left[\begin{array}{c}
1 \\
z^{\prime}
\end{array}\right]\right)\right)=1 \quad\left(\zeta=e^{\frac{2 \pi i}{9}}\right) \\
\Rightarrow U_{v}=\sum_{k=0}^{2} \zeta^{v_{k}}|k\rangle\langle k| \quad\left(v_{k} \in \mathbb{Z}_{9}\right) \\
v=\left(v_{0}, v_{1}, v_{2}\right)=\left(0,6 z^{\prime}+2 \gamma^{\prime}+3 \epsilon^{\prime}, 6 z^{\prime}+\gamma^{\prime}+6 \epsilon^{\prime}\right) \bmod 9
\end{gathered}
$$

U_{v} as qudit version of $U_{\pi / 8}$

$$
\begin{gathered}
\text { For } p=3: \quad \operatorname{det}\left(\zeta^{2 \gamma^{\prime}} C\left(\left.\left[\begin{array}{cc}
1 & 0 \\
\gamma^{\prime} & 1
\end{array}\right] \right\rvert\,\left[\begin{array}{c}
1 \\
z^{\prime}
\end{array}\right]\right)\right)=1 \quad\left(\zeta=e^{\frac{2 \pi i}{9}}\right) \\
\Rightarrow U_{v}=\sum_{k=0}^{2} \zeta^{v_{k}}|k\rangle\langle k| \quad\left(v_{k} \in \mathbb{Z}_{9}\right) \\
v=\left(v_{0}, v_{1}, v_{2}\right)=\left(0,6 z^{\prime}+2 \gamma^{\prime}+3 \epsilon^{\prime}, 6 z^{\prime}+\gamma^{\prime}+6 \epsilon^{\prime}\right) \bmod 9
\end{gathered}
$$

Examples:

$$
p=3:\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{\frac{2 \pi i}{9}} & 0 \\
0 & 0 & e^{-\frac{2 \pi i}{9}}
\end{array}\right) \quad p=5:\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & e^{-\frac{4 \pi i}{5}} & 0 & 0 & 0 \\
0 & 0 & e^{-\frac{2 \pi i}{5}} & 0 & 0 \\
0 & 0 & 0 & e^{\frac{4 \pi i}{5}} & 0 \\
0 & 0 & 0 & 0 & e^{\frac{2 \pi i}{5}}
\end{array}\right)
$$

Group Structure of U_{v} gates

Can create

- p^{3} gates $U_{v}\left(z^{\prime}, \gamma^{\prime}, \epsilon^{\prime}\right)$ varying over $z^{\prime}, \gamma^{\prime}, \epsilon^{\prime} \in \mathbb{Z}_{p}$.
- $p^{2}(p-1)$ non-Clifford U_{v} varying over $z^{\prime}, \epsilon^{\prime} \in \mathbb{Z}_{p}, \gamma^{\prime} \in \mathbb{Z}_{p}^{*}$.

$$
\left.\left.U_{v} D_{(1 \mid 0)} U_{v}^{\dagger}=\omega^{\epsilon^{\prime}} C_{\left(\left.\left[\begin{array}{ll}
1 & 0 \\
\gamma^{\prime} & 1
\end{array}\right] \right\rvert\,\left[\begin{array}{c}
1 \\
z^{\prime}
\end{array}\right]\right)} \text { but } C_{\left(\left.\left[\begin{array}{ll}
1 & 0
\end{array}\right] \right\rvert\,\left[\begin{array}{l}
1 \\
0
\end{array} 1\right.\right.}^{2} \begin{array}{l}
z^{\prime}
\end{array}\right]\right)=D_{\left(1 \mid z^{\prime}\right)}
$$

Easy to show p^{3} gates $\left\{U_{v}\right\}$ form a finite Abelian group.

Group Structure of U_{v} gates

Can create

- p^{3} gates $U_{v}\left(z^{\prime}, \gamma^{\prime}, \epsilon^{\prime}\right)$ varying over $z^{\prime}, \gamma^{\prime}, \epsilon^{\prime} \in \mathbb{Z}_{p}$.
- $p^{2}(p-1)$ non-Clifford U_{v} varying over $z^{\prime}, \epsilon^{\prime} \in \mathbb{Z}_{p}, \gamma^{\prime} \in \mathbb{Z}_{p}^{*}$.

$$
U_{v} D_{(1 \mid 0)} U_{v}^{\dagger}=\omega^{\epsilon^{\prime}} C_{\left(\left.\left[\begin{array}{ll}
1 & 0 \\
\gamma^{\prime} & 1
\end{array}\right] \right\rvert\,\left[\begin{array}{l}
1 \\
z^{\prime}
\end{array}\right]\right)} \text { but } C_{\left(\left.\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \right\rvert\,\left[\begin{array}{l}
1 \\
z^{\prime}
\end{array}\right]\right)}=D_{\left(1 \mid z^{\prime}\right)}
$$

Easy to show p^{3} gates $\left\{U_{v}\right\}$ form a finite Abelian group.

Use Fund. Thm. of finite Abelian groups to characterize $\left\{U_{v}\right\}$

	Group	No. elements of order				Min. no. of
	name	1	p	p^{2}	p^{3}	generators
$p=2$	\mathbb{Z}_{8}	1	1	2	4	1
$p=3$	$\mathbb{Z}_{9} \times \mathbb{Z}_{3}$	1	8	18	0	2
$p>3$	\mathbb{Z}_{p}^{3}	1	$p^{3}-1$	0	0	3

Group Si

"All primes are odd except two, which is the oddest prime of all!"
Can create

- p^{3} gates $\epsilon)$ varying over $z^{\prime}, \gamma^{\prime}, \epsilon^{\prime} \in \mathbb{Z}_{p}$.
- $p^{2}\left(p-1 \quad\right.$ ford U_{v} varying over $z^{\prime}, \epsilon^{\prime} \in \mathbb{Z}_{p}, \gamma^{\prime} \in \mathbb{Z}_{p}^{*}$.

Use Fund. Thm. of finite Abelian groups to characterize $\left\{U_{v}\right\}$

	Group	No. elements of order				Min. no. of
	name	1	p	p^{2}	p^{3}	generators
$p=2$	\mathbb{Z}_{8}	1	1	2	4	1
$p=3$	$\mathbb{Z}_{9} \times \mathbb{Z}_{3}$	1	8	18	0	2
$p>3$	\mathbb{Z}_{p}^{3}	1	$p^{3}-1$	0	0	3

Group Si

"All primes are odd except two, which is the oddest prime of all!"
Can create

- p^{3} gates
- $p^{2}(p-1$ ford U_{v} varying over $z^{\prime}, \epsilon^{\prime} \in \mathbb{Z}_{p}, \gamma^{\prime} \in \mathbb{Z}_{p}^{*}$.

Perhaps, in Quantum Information, three is the second oddest prime!

Use Fund. Thm. of finite Abelian groups to characterize $\left\{U_{v}\right\}$

	Group	No. elements of order				Min. no. of
	name	1	p	p^{2}	p^{3}	generators
$p=2$	\mathbb{Z}_{8}	1	1	2	4	1
$p=3$	$\mathbb{Z}_{9} \times \mathbb{Z}_{3}$	1	8	18	0	2
$p>3$	\mathbb{Z}_{p}^{3}	1	$p^{3}-1$	0	0	3

Group Structure of U_{v} gates

Can create

- p^{3} gates $U_{v}\left(z^{\prime}, \gamma^{\prime}, \epsilon^{\prime}\right)$ varying over $z^{\prime}, \gamma^{\prime}, \epsilon^{\prime} \in \mathbb{Z}_{p}$.
- $p^{2}(p-1)$ non-Clifford U_{v} varying over $z^{\prime}, \epsilon^{\prime} \in \mathbb{Z}_{p}, \gamma^{\prime} \in \mathbb{Z}_{p}^{*}$.

$$
\left.\left.U_{v} D_{(1 \mid 0)} U_{v}^{\dagger}=\omega^{\epsilon^{\prime}} C_{\left(\left.\left[\begin{array}{ll}
1 & 0 \\
\gamma^{\prime} & 1
\end{array}\right] \right\rvert\,\left[\begin{array}{c}
1 \\
z^{\prime}
\end{array}\right]\right)} \text { but } C_{\left(\left.\left[\begin{array}{ll}
1 & 0
\end{array}\right] \right\rvert\,\left[\begin{array}{l}
1 \\
0
\end{array} 1\right.\right.}^{2} \begin{array}{l}
z^{\prime}
\end{array}\right]\right)=D_{\left(1 \mid z^{\prime}\right)}
$$

Easy to show p^{3} gates $\left\{U_{v}\right\}$ form a finite Abelian group.

$$
U_{v}\left(z_{1}, \gamma_{1}, \epsilon_{1}\right) U_{v}\left(z_{2}, \gamma_{2}, \epsilon_{2}\right)=U_{v}\left(z_{1}+z_{2}, \gamma_{1}+\gamma_{2}, \epsilon_{1}+\epsilon_{2}\right)
$$

Use Fund. Thm. of finite Abelian groups to characterize $\left\{U_{v}\right\}$

	Group	No. elements of order				Min. no. of
	name	1	p	p^{2}	p^{3}	generators
$p=2$	\mathbb{Z}_{8}	1	1	2	4	1
$p=3$	$\mathbb{Z}_{9} \times \mathbb{Z}_{3}$	1	8	18	0	2
$p>3$	\mathbb{Z}_{p}^{3}	1	$p^{3}-1$	0	0	3

Qubit Geometry: Magic States and $U_{\pi / 8}$

Qubit Geometry: Magic States and $U_{\pi / 8}$

Qubit Geometry: Magic States and $U_{\pi / 8}$

Qubit Geometry: Magic States and $U_{\pi / 8}$

$$
\begin{aligned}
& |T\rangle\langle T|=\frac{1}{2}\left(\mathbb{I}+\frac{\sigma_{x}+\sigma_{y}+\sigma_{z}}{\sqrt{3}}\right) \\
& |H\rangle\langle H|=\frac{1}{2}\left(\mathbb{I}+\frac{\sigma_{x}+\sigma_{y}}{\sqrt{2}}\right)
\end{aligned}
$$

- Both $|T\rangle$ and $|H\rangle$ are eigenvectors of Clifford gates
- $|T\rangle$ is the most non-stabilizer qubit state
- $|H\rangle$ is the most non-stabilizer qubit state in the equatorial plane
- Note that $|H\rangle=U_{\pi / 8}|+\rangle=\frac{1}{\sqrt{2}} \operatorname{diag}\left(U_{\pi / 8}\right)$

Qubit Geometry: Magic States and $U_{\pi / 8}$

$$
\begin{aligned}
& |T\rangle\langle T|=\frac{1}{2}\left(\mathbb{I}+\frac{\sigma_{x}+\sigma_{y}+\sigma_{z}}{\sqrt{3}}\right) \\
& |H\rangle\langle H|=\frac{1}{2}\left(\mathbb{I}+\frac{\sigma_{x}+\sigma_{y}}{\sqrt{2}}\right)
\end{aligned}
$$

- Both $|T\rangle$ and $|H\rangle$ are eigenvectors of Clifford gates
- $|T\rangle$ is the most non-stabilizer qubit state
- $|H\rangle$ is the most non-stabilizer qubit state in the equatorial plane
- Note that $|H\rangle=U_{\pi / 8}|+\rangle=\frac{1}{\sqrt{2}} \operatorname{diag}\left(U_{\pi / 8}\right)$
- In [vDH'11], states $\frac{|0\rangle-|1\rangle}{\sqrt{2}}$ were found to be maximally non-stabilizer, and Clifford eigenvectors, in all odd prime dimensions (similar to $|T\rangle$?)
- We will argue that $\left|\psi_{U_{v}}\right\rangle \equiv U_{v}|+\rangle$ is the qudit analogue of $|H\rangle$.

\square
W. van Dam and M. Howard,

Noise thresholds for higher-dimensional systems using the discrete Wigner function
Phys. Rev. A. 83, 032310, (2011).

Geometry: $\left|\psi_{\mathrm{U}_{v}}\right\rangle$ as the qudit analogue of $|\mathrm{H}\rangle$

$\mathcal{S T A B}=$ Convex hull of qudit stabilizer states

$$
\begin{aligned}
& \left.=\left\{\rho\left|\rho=\sum_{i=1}^{p(p+1)} q_{i}\right| \psi_{S T A B}^{(i)}\right\rangle \psi_{S T A B}^{(i)} \mid, \sum_{i=1}^{p(p+1)} q_{i}=1\right\} \\
& =\left\{\rho \mid \min _{u \in \mathbb{Z}_{p}^{p+1}} \operatorname{Tr}[A(u) \rho] \geq 0\right\}
\end{aligned}
$$

Geometry: $\left|\psi_{\mathrm{U}_{v}}\right\rangle$ as the qudit analogue of $|\mathbf{H}\rangle$

$\mathcal{S T A B}=$ Convex hull of qudit stabilizer states

$$
\begin{aligned}
& \left.=\left\{\rho\left|\rho=\sum_{i=1}^{p(p+1)} q_{i}\right| \psi_{S T A B}^{(i)}\right\rangle\left\langle\psi_{S T A B}^{(i)}\right|, \sum_{i=1}^{p(p+1)} q_{i}=1\right\} \\
& =\left\{\rho \mid \min _{u \in \mathbb{Z}_{p}^{p+1}} \operatorname{Tr}[A(u) \rho] \geq 0\right\}
\end{aligned}
$$

Define $\left\{\begin{array}{l}U_{\theta}=e^{i \theta_{k}}|k\rangle\langle k|\left(\theta_{k} \in \mathbb{R}\right) \\ \left|\psi_{U_{\theta}}\right\rangle=\frac{e^{i \theta_{k}}}{\sqrt{p}}|k\rangle=U_{\theta}|+\rangle\end{array} \quad\right.$ so that $\left\{\begin{array}{l}\left\{U_{v}\right\} \subset\left\{U_{\theta}\right\} \\ \left\{\left|\psi_{U_{v}}\right\rangle\right\} \subset\left\{\left|\psi_{U_{\theta}}\right\rangle\right\}\end{array}\right.$

Geometry: $\left|\psi_{\mathrm{U}_{v}}\right\rangle$ as the qudit analogue of $|\mathrm{H}\rangle$

$\mathcal{S T A B}=$ Convex hull of qudit stabilizer states

$$
\begin{aligned}
& \left.=\left\{\rho\left|\rho=\sum_{i=1}^{p(p+1)} q_{i}\right| \psi_{S T A B}^{(i)}\right\rangle \psi_{S T A B}^{(i)} \mid, \sum_{i=1}^{p(p+1)} q_{i}=1\right\} \\
& =\left\{\rho \mid \min _{u \in \mathbb{Z}_{p}^{p+1}} \operatorname{Tr}[A(u) \rho] \geq 0\right\}
\end{aligned}
$$

Define $\left\{\begin{array}{l}U_{\theta}=e^{i \theta_{k}}|k\rangle\langle k|\left(\theta_{k} \in \mathbb{R}\right) \\ \left|\psi_{U_{\theta}}\right\rangle=\frac{e^{i \theta_{k}}}{\sqrt{p}}|k\rangle=U_{\theta}|+\rangle\end{array} \quad\right.$ so that $\left\{\begin{array}{l}\left\{U_{v}\right\} \subset\left\{U_{\theta}\right\} \\ \left\{\left|\psi_{U_{v}}\right\rangle\right\} \subset\left\{\left|\psi_{U_{\theta}}\right\rangle\right\}\end{array}\right.$

- $\left|\psi_{U_{v}}\right\rangle$ is farthest outside $\mathcal{S T A B}$ of all $\left|\psi_{U_{\theta}}\right\rangle$ (for $p=2,3,5,7$ at least)
- $\left|\psi_{U_{v}}\right\rangle$ is also a Clifford eigenvector:

$$
C_{\left(\left.\left[\begin{array}{ll}
1 & 0 \\
\gamma^{\prime} & 1
\end{array}\right] \right\rvert\,\left[\begin{array}{l}
1 \\
z^{\prime}
\end{array}\right]\right)}\left|\psi_{U\left(z^{\prime}, \gamma^{\prime}, \epsilon^{\prime}\right)}\right\rangle=\omega^{-\epsilon^{\prime}}\left|\psi_{U\left(z^{\prime}, \gamma^{\prime}, \epsilon^{\prime}\right)}\right\rangle .
$$

Geometry: U_{v} as the qudit analogue of $\mathrm{U}_{\pi / 8}$

$$
\text { For }\left\{\begin{array} { l c }
{ U \in \mathrm { U } (p) } & { \text { Jamiotkowski } } \\
{ \mathcal { E } : \rho _ { \text { in } } \mapsto \rho _ { \text { out } } } & { \text { state } = }
\end{array} \left\{\begin{array}{l}
\left|J_{U}\right\rangle \equiv(\mathbb{I} \otimes U) \sum_{j=0}^{p-1} \frac{|j j\rangle}{\sqrt{p}} \\
\varrho_{\mathcal{E}}=[\mathcal{I} \otimes \mathcal{E}]\left(\sum_{j, k=0}^{p-1} \frac{|j, j\rangle k, k \mid}{p}\right)
\end{array}\right.\right.
$$

$\mathcal{C} \mathcal{L I F F}=$ Convex hull of qudit Clifford gates

$$
\begin{aligned}
& =\left\{\varrho \mathcal{E}\left|\varrho \mathcal{E}=\sum_{j, k=1}^{\substack{j=p\left(p^{2}-1\right) \\
k=p^{2}}} q_{j, k}\right| J_{C_{\left(F_{j} \mid \vec{\chi}_{k}\right)}}\right\rangle\left\langle J_{C_{\left(F_{j} \mid \vec{x}_{k}\right)} \mid}=\left\{\varrho_{\mathcal{E} \mid} \mid \min _{W \in \mathcal{W}} \operatorname{Tr}[W \varrho \mathcal{E}] \geq 0\right\}\right.
\end{aligned}
$$

Geometry: U_{v} as the qudit analogue of $\mathrm{U}_{\pi / 8}$

$$
\text { For }\left\{\begin{array} { l c }
{ U \in \mathrm { U } (p) } & { \text { Jamiotkowski } } \\
{ \mathcal { E } : \rho _ { \text { in } } \mapsto \rho _ { \text { out } } } & { \text { state } = }
\end{array} \left\{\begin{array}{l}
\left|J_{U}\right\rangle \equiv(\mathbb{I} \otimes U) \sum_{j=0}^{p-1} \frac{|j j\rangle}{\sqrt{p}} \\
\varrho_{\mathcal{E}}=[\mathcal{I} \otimes \mathcal{E}]\left(\sum_{j, k=0}^{p-1} \frac{|j, j\rangle k, k \mid}{p}\right)
\end{array}\right.\right.
$$

$\mathcal{C} \mathcal{L F F}=$ Convex hull of qudit Clifford gates

$$
\begin{aligned}
& \left.=\left\{\varrho_{\mathcal{E}}\left|\varrho_{\mathcal{E}}=\sum_{j, k=1}^{\substack{j=p\left(p^{2}-1\right) \\
k=p^{2}}} q_{j, k}\right| J_{\left.C_{\left(F_{j} \mid \bar{x}_{k}\right)}\right\rangle}\right\rangle J_{C_{\left(F_{j} \mid \bar{x}_{k}\right)} \mid} \mid\right\} \\
& =\left\{\varrho_{\mathcal{E}} \mid \min _{W \in \mathcal{W}} \operatorname{Tr}\left[W \varrho_{\mathcal{E}}\right] \geq 0\right\}
\end{aligned}
$$

- Seems that U_{v} is the most non-Clifford $U \in \mathrm{U}(p)$ (for $p=2,3,5,7$, ?)

\square
W. van Dam and M. Howard,

Noise thresholds for higher-dimensional systems using the discrete Wigner function

Applications?

Application to Fault-tolerant QC

- We argued $\left|\psi_{U_{v}}\right\rangle$ was the qudit analogue of $|H\rangle=\left|\psi_{U_{\pi} / 8}\right\rangle$.
- The key feature of $|H\rangle$ is that it is suitable for magic state distillation

Application to Fault-tolerant QC

- We argued $\left|\psi_{U_{v}}\right\rangle$ was the qudit analogue of $|H\rangle=\left|\psi_{U_{\pi} / 8}\right\rangle$.
- The key feature of $|H\rangle$ is that it is suitable for magic state distillation

Application to Fault-tolerant QC

- We argued $\left|\psi_{U_{v}}\right\rangle$ was the qudit analogue of $|H\rangle=\left|\psi_{U_{\pi} / 8}\right\rangle$.
- The key feature of $|H\rangle$ is that it is suitable for magic state distillation

- Campbell, Anwar and Browne have shown $\left|\psi_{U_{v}}\right\rangle$ are qudit magic states.
- Nebe, Rains and Sloane have shown $\left\langle\right.$ Cliffords, $\left.U_{v}\right\rangle$ enables UQC
- Geometrical features are good news!

\square
E. T. Campbell, H. Anwar and D. E. Browne,

Magic state distillation in all prime dimensions using quantum Reed-Muller codes arXiv:1205.3104v1, (2012).

UQC using perfect Cliffords + noisy U_{v} gates

$$
\mathcal{E}_{\left(\left|\psi_{U_{v}}\right\rangle, \varepsilon\right)}(\rho) \equiv(1-\varepsilon) U_{v} \rho U_{v}^{\dagger}+\varepsilon \frac{\mathbb{I}}{p} \quad(\varepsilon \approx \text { depolarizing error rate })
$$

- For what noise rates, ε, does $\mathcal{E}_{\left(\left|\psi_{U_{v}}\right\rangle, \varepsilon\right)}+$ Cliffords enable UQC?

UQC using perfect Cliffords + noisy U_{v} gates

$$
\mathcal{E}_{\left(\left|\psi_{U_{v}}\right\rangle, \varepsilon\right)}(\rho) \equiv(1-\varepsilon) U_{v} \rho U_{v}^{\dagger}+\varepsilon \frac{\mathbb{I}}{p} \quad(\varepsilon \approx \text { depolarizing error rate })
$$

- For what noise rates, ε, does $\mathcal{E}_{\left(\left|\psi_{U_{v}}\right\rangle, \varepsilon\right)}+$ Cliffords enable UQC?
- Postselection "dilutes" the noise: $\varepsilon^{\prime}<\varepsilon$.

Exact relationship:

$$
\varepsilon^{\prime}=\frac{\varepsilon}{p-(p-1) \varepsilon}
$$

- Use this result, along with routines in [CAB'12], to find allowable ε

Noise thresholds for UQC

	Lower Bound	Upper Bound
$p=2$	45.32%	45.32%
$p=3$	58.15%	78.63%
$p=5$	80.61%	95.20%
$p=7$	72.24%	97.63%

Table: Bounds on threshold ε for UQC using noisy $U_{v}+$ ideal Cliffords

How are these values found?
Lower bound:

- Postselction circuit \& the best performing MSD routines given in [CAB'12]. Upper bound:
- Explicit facets of $\mathcal{C L I F F}$ for which $\operatorname{Tr}\left(W\left[(1-\varepsilon)\left|J_{U}\right\rangle\left\langle J_{U}\right|+\varepsilon \frac{\mathbb{I}}{p^{2}}\right]\right)=0$

Note: U_{v} also maximally robust to phase damping noise ($p=2,3,5,7, ?$) Open Question: Can the gaps be closed?

Applications?

CHSH Bell Inequality

$\left(\lambda\left(A_{j}\right), \lambda\left(B_{k}\right)= \pm 1\right)$

CHSH Bell Inequality

CHSH Bell Inequality

CHSH Bell Inequality

- $\quad 2 \sqrt{2} \not \leq 2$

CHSH Bell Inequality

$$
\begin{array}{ll}
\left\langle A_{0} B_{0}\right\rangle+\left\langle A_{0} B_{1}\right\rangle+\left\langle A_{1} B_{0}\right\rangle-\left\langle A_{1} B_{1}\right\rangle \leq 2 & \left(\lambda\left(A_{j}\right), \lambda\left(B_{k}\right)=\right. \\
& A_{0}=X \\
& A_{1}=Y \\
& B_{0}=X \\
& B_{1}=Y \\
& \bullet\langle\mathcal{B}\rangle=2 \sqrt{2} \not \leq 2
\end{array}
$$

Maximizing quantity $\langle\mathcal{B}\rangle$ is related to maximizing

settings

$$
\sum_{\substack{a+b=s t \bmod 2 \\\left(a, b, s, t \in \mathbb{Z}_{2}\right)}} p(a, b \mid s, t)
$$

where $p(a, b \mid s, t)$ is a conditional prob. outcomes

CHSH Bell Inequality

$$
\langle\mathcal{B}\rangle \leq 2 \quad \mathcal{B}=\sum_{j, k \in \mathbb{Z}_{2}}(-1)^{j k} A_{j} B_{k} \quad\left(\lambda\left(A_{j}\right), \lambda\left(B_{k}\right)= \pm 1\right)
$$

CHSH Bell Inequality

CHSH Bell Inequality

$$
\begin{aligned}
& \langle\mathcal{B}\rangle \leq 2 \quad \mathcal{B}=\sum \omega^{j k} A_{j} B_{k} \quad\left(\lambda\left(A_{j}\right), \lambda\left(B_{k}\right)= \pm 1\right) \\
& A_{0}=X \\
& A_{1}=Y \\
& B_{0}=X \\
& B_{1}=Y \\
& \text { - }\langle\mathcal{B}\rangle=2 \sqrt{2} \not \leq 2
\end{aligned}
$$

Generalized CHSH Bell Inequality for $p=3$

$$
\langle\mathcal{B}\rangle \leq 4.5 \quad \mathcal{B}=\sum_{\substack{n \in \mathbb{Z}_{3}^{*} \\ j, k \in \mathbb{Z}_{3}}} \omega^{n j k} A_{j}^{n} B_{k}^{n} \quad\left(\lambda\left(A_{j}\right), \lambda\left(B_{k}\right)=\left\{\omega^{0}, \omega^{1}, \omega^{2}\right\}\right)
$$

Generalized CHSH Bell Inequality for $p=3$

$$
\begin{aligned}
& \langle\mathcal{B}\rangle \leq 4.5 \quad \mathcal{B}=\sum_{\substack{n \in \mathbb{Z}_{3}^{*} \\
j, k \in \mathbb{Z}_{3}}} \omega^{n j k} A_{j}^{n} B_{k}^{n} \\
& \left(\lambda\left(A_{j}\right), \lambda\left(B_{k}\right)=\left\{\omega^{0}, \omega^{1}, \omega^{2}\right\}\right) \\
& A_{j}=\omega^{j(j+1)} X Z^{j} \\
& B_{k}=\omega^{k(k+2)} X Z^{2 k} \\
& \text { - }\langle\mathcal{B}\rangle=5.117 \not \leq 4.5
\end{aligned}
$$

Generalized CHSH Bell Inequality for $p=3$

$$
\langle\mathcal{B}\rangle \leq 4.5 \quad \mathcal{B}=\sum_{\substack{n \in \mathbb{Z}_{3}^{*} \\ j, k \in \mathbb{Z}_{3}}} \omega^{n j k} A_{j}^{n} B_{k}^{n} \quad\left(\lambda\left(A_{j}\right), \lambda\left(B_{k}\right)=\left\{\omega^{0}, \omega^{1}, \omega^{2}\right\}\right)
$$

Maximizing quantity $\langle\mathcal{B}\rangle$ is related to maximizing

settings

Generalized CHSH Bell Inequalities

Originates with Ji et al., Reexamined by Liang et al.
\square Se-Wan Ji, Jinhyoung Lee, James Lim, Koji Nagata, and Hai-Woong Lee Multisetting Bell inequality for qudits,
Phys. Rev. A 78, 052103 (2008).
\square
Yeong-Cherng Liang, Chu-Wee Lim, Dong-Ling Deng
Reexamination of a multisetting Bell inequality for qudits,
Phys. Rev. A 80, 052116 (2009).
Observation 1: For all the cases $(p \leq 17)$ that we have checked, U_{v} are optimal in the sense:

$$
\operatorname{Tr}\left(\left|J_{U_{v}}\right\rangle\left\langle J_{U_{v}}\right| \mathcal{B}\right)=\lambda_{\max }(\mathcal{B})
$$

Generalized CHSH Bell Inequalities

Originates with Ji et al., Reexamined by Liang et al.
\square
Se-Wan Ji, Jinhyoung Lee, James Lim, Koji Nagata, and Hai-Woong Lee Multisetting Bell inequality for qudits,
Phys. Rev. A 78, 052103 (2008).
\square
Yeong-Cherng Liang, Chu-Wee Lim, Dong-Ling Deng
Reexamination of a multisetting Bell inequality for qudits,
Phys. Rev. A 80, 052116 (2009).
Observation 1: For all the cases $(p \leq 17)$ that we have checked, U_{v} are optimal in the sense:

$$
\operatorname{Tr}\left(\left|J_{U_{v}}\right\rangle\left\langle J_{U_{v}}\right| \mathcal{B}\right)=\lambda_{\max }(\mathcal{B})
$$

Observation 2: Suggests a natural generalization to $p \geq 3$ of the qubit result relating capability of operation $\mathcal{E}+$ stabilizer ops

$$
\begin{gathered}
\text { Violation of } \\
\text { CHSH } \\
\text { inequality }
\end{gathered} \Rightarrow \begin{gathered}
\text { Universal } \\
\text { (via MSD })
\end{gathered}
$$

\squareM. Howard and J. Vala,

Nonlocality as a benchmark for universal quantum computation in Ising anyon topological quantum computers, Phys. Rev. A 85, 022304 (2012).

Open Questions \& Thanks

- Are qudits better in any way?
- How does one fairly compare qubits and qudits?
- Physical system that enables topologically protected qudit Cliffords? (cf. Ising anyons for $p=2$)
- What does the rest of \mathcal{C}_{3} look like?
- What does the diagonal subset of \mathcal{C}_{k} look like?
- Can we close the gap between upper and lower bounds on noise thresholds?
- Are there applications in MUBs, SICs, Unitary designs?
- Can stronger statements be made relating nonlocality and UQC in the Clifford computer/magic state model of computation?

Thanks to Earl Campbell for many helpful discussions \& comments

