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Single-Qudit Clifford Gates

C = {C(F |~χ) | F ∈ SL(2,Zp), ~χ ∈ Z2
p},

F =
( α β
γ δ

)
with unit determinant. ~χ =
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x
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)
is a vector of length 2.

All elements of F, ~χ are from Zp = {0, 1, . . . , p− 1}
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Uυ as qudit version of Uπ/8 (p > 3)

Define Uυ = U(υ0, υ1, . . .) =

p−1∑

k=0

ωυk |k〉〈k| (υk ∈ Zp)

Easy to show UυD(x|z)U
†
υ = D(x|z)

∑

k

ω(υk+x−υk)|k〉〈k|

and in particular UυD(1|0)U
†
υ = D(1|0)

∑

k

ω(υk+1−υk)|k〉〈k| *

Must have UυD(1|0)U
†
υ = ωε

′
C([

1 0
γ′ 1

]∣∣∣[ 1
z′

])

= ωε
′
D(1|z′)

p−1∑

k=0

τγ
′k2 |k〉〈k| **

Equating * and ** : ωυk+1−υk = ωε
′
τ z
′
ωkz

′
τk

2γ′ (∀k ∈ Zp),
⇒ υk = 12−1k(γ′ + k(6z′ + (2k − 3)γ′) + kε′ (υ0 = 0)
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Uυ as qudit version of Uπ/8 (p = 3)

For p = 3 : det

(
ζ2γ

′
C([

1 0
γ′ 1

]∣∣∣[ 1
z′

])) = 1 (ζ = e
2πi
9 )

⇒ Uυ =

2∑

k=0

ζυk |k〉〈k| (υk ∈ Z9)

υ = (υ0, υ1, υ2) =(0, 6z′ + 2γ′ + 3ε′, 6z′ + γ′ + 6ε′) mod 9

Examples:

p = 3 :




1 0 0

0 e
2πi
9 0

0 0 e−
2πi
9




[z′=1,γ′=2,ε′=0]

p = 5 :




1 0 0 0 0

0 e−
4πi
5 0 0 0

0 0 e−
2πi
5 0 0

0 0 0 e
4πi
5 0

0 0 0 0 e
2πi
5




[z′=1,γ′=4,ε′=0]
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Group Structure of Uυ gates

Can create
p3 gates Uυ(z

′, γ′, ε′) varying over z′, γ′, ε′ ∈ Zp.
p2(p− 1) non-Clifford Uυ varying over z′, ε′ ∈ Zp, γ′ ∈ Z∗p.

UυD(1|0)U
†
υ = ωε

′
C([

1 0
γ′ 1

]∣∣∣[ 1
z′

]) but C([
1 0
0 1

]∣∣∣[ 1
z′

]) = D(1|z′)

Easy to show p3 gates {Uυ} form a finite Abelian group.

Uυ(z1, γ1, ε1)Uυ(z2, γ2, ε2) = Uυ(z1 + z2, γ1 + γ2, ε1 + ε2)

Use Fund. Thm. of finite Abelian groups to characterize {Uυ}
Group No. elements of order Min. no. of
name 1 p p2 p3 generators

p = 2 Z8 1 1 2 4 1
p = 3 Z9 × Z3 1 8 18 0 2
p > 3 Z3

p 1 p3 − 1 0 0 3

Table: Group structure of {Uυ} under matrix multiplication.

“All primes are odd except two,
which is the oddest prime of all!”
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Perhaps, in Quantum Information,
three is the second oddest prime!
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Qubit Geometry: Magic States and Uπ/8

|+〉

|0〉

|1〉

1

|T 〉〈T | = 1

2

(
I+

σx + σy + σz√
3

)

|H〉〈H| = 1

2

(
I+

σx + σy√
2

)

Both |T 〉 and |H〉 are eigenvectors of Clifford gates
|T 〉 is the most non-stabilizer qubit state
|H〉 is the most non-stabilizer qubit state in the equatorial plane

Note that |H〉 = Uπ/8|+〉 = 1√
2
diag(Uπ/8)

In [vDH’11], states |0〉−|1〉√
2

were found to be maximally non-stabilizer, and

Clifford eigenvectors, in all odd prime dimensions (similar to |T 〉?)

We will argue that |ψUυ 〉 ≡ Uυ|+〉 is the qudit analogue of |H〉.

Preliminaries
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Geometry: |ψUυ
〉 as the qudit analogue of |H〉

|+〉

|0〉

|1〉

1

STAB = Convex hull of qudit stabilizer states

=

{
ρ

∣∣∣∣∣ ρ =

p(p+1)∑

i=1

qi|ψ(i)
STAB

〉〈ψ(i)
STAB

|,
p(p+1)∑

i=1

qi = 1

}

=

{
ρ

∣∣∣∣∣ min
u∈Zp+1

p

Tr [A(u)ρ] ≥ 0

}

Define

{
Uθ = eiθk |k〉〈k| (θk ∈ R)
|ψUθ 〉 = eiθk√

p |k〉 = Uθ|+〉
so that

{
{Uυ} ⊂ {Uθ}
{|ψUυ 〉} ⊂ {|ψUθ 〉}

|ψUυ 〉 is farthest outside STAB of all |ψUθ 〉 (for p = 2, 3, 5, 7 at least)
|ψUυ 〉 is also a Clifford eigenvector:

C([
1 0
γ′ 1

]∣∣∣[ 1
z′

])|ψU(z′,γ′,ε′)〉 = ω−ε
′ |ψU(z′,γ′,ε′)〉.
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Geometry: Uυ as the qudit analogue of Uπ/8

For

{
U ∈ U(p)

E : ρin 7→ ρout

Jamio lkowski

state =




|JU 〉 ≡ (I⊗ U)

∑p−1
j=0

|jj〉√
p

%E = [I ⊗ E ]
(∑p−1

j,k=0
|j,j〉〈k,k|

p

)

|JC(Fj |~χk)
〉

|JC(F2|~χ1)
〉

|JC(F1|~χ1)
〉

1

CLIFF = Convex hull of qudit Clifford gates

=

{
%E

∣∣∣∣∣ %E =

j=p(p2−1)

k=p2∑

j,k=1

qj,k|JC(Fj |~χk)
〉〈JC(Fj |~χk)

|
}

=

{
%E

∣∣∣∣∣ min
W∈W

Tr [W%E ] ≥ 0

}

Seems that Uυ is the most non-Clifford U ∈ U(p) (for p = 2, 3, 5, 7, ?)

Preliminaries

Key References IX

W. van Dam and M. Howard,
Noise thresholds for higher-dimensional systems using the discrete Wigner function

Phys. Rev. A. 83, 032310, (2011).
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Applications?

Uπ/8

1

Uπ/8 =

(
e−i

π
8 0

0 ei
π
8

)
∝
(

1 0

0 ei
π
4

)Uπ/8

1

UQC= 〈Cliffords, Uπ/8〉
Teleportation-based UQC

Transversal for some
Reed-Muller codes

Secure assisted UQC

Measurement-based UQC with
graph states

Optimal CHSH game with
(|00〉+ |11〉)/

√
2

Blind UQC
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Application to Fault-tolerant QC

We argued |ψUυ 〉 was the qudit analogue of |H〉 = |ψUπ/8〉.
The key feature of |H〉 is that it is suitable for magic state distillation

ρin

ρin

...

ρin

ρin

Magic
State

Distillation
|H〉

Small
Stabilizer
Circuit

|φ〉 Uπ/8 |φ〉

Trashρout

1

Campbell, Anwar and Browne have shown |ψUυ 〉 are qudit magic states.
Nebe, Rains and Sloane have shown 〈Cliffords,Uυ〉 enables UQC
Geometrical features are good news!

Preliminaries

Key References X

E. T. Campbell, H. Anwar and D. E. Browne,
Magic state distillation in all prime dimensions using quantum Reed-Muller codes

arXiv:1205.3104v1, (2012).

10 / 14

37 / 58



Preliminaries Mathematical Structure Geometry Applications

Application to Fault-tolerant QC

We argued |ψUυ 〉 was the qudit analogue of |H〉 = |ψUπ/8〉.
The key feature of |H〉 is that it is suitable for magic state distillation

ρin

ρin

...

ρin

ρin

Magic
State

Distillation
|H〉

Small
Stabilizer
Circuit

|φ〉 Uπ/8 |φ〉

Trashρout

1

Campbell, Anwar and Browne have shown |ψUυ 〉 are qudit magic states.
Nebe, Rains and Sloane have shown 〈Cliffords,Uυ〉 enables UQC
Geometrical features are good news!

Preliminaries

Key References X

E. T. Campbell, H. Anwar and D. E. Browne,
Magic state distillation in all prime dimensions using quantum Reed-Muller codes

arXiv:1205.3104v1, (2012).

10 / 14

38 / 58



Preliminaries Mathematical Structure Geometry Applications

Application to Fault-tolerant QC

We argued |ψUυ 〉 was the qudit analogue of |H〉 = |ψUπ/8〉.
The key feature of |H〉 is that it is suitable for magic state distillation

ρin

ρin

...

ρin

ρin

Magic
State

Distillation
|H〉

Small
Stabilizer
Circuit

|φ〉 Uπ/8 |φ〉

Trashρout

1

Campbell, Anwar and Browne have shown |ψUυ 〉 are qudit magic states.
Nebe, Rains and Sloane have shown 〈Cliffords,Uυ〉 enables UQC
Geometrical features are good news!

Preliminaries

Key References X

E. T. Campbell, H. Anwar and D. E. Browne,
Magic state distillation in all prime dimensions using quantum Reed-Muller codes

arXiv:1205.3104v1, (2012).

10 / 14

39 / 58



Preliminaries Mathematical Structure Geometry Applications

UQC using perfect Cliffords + noisy Uυ gates

E(|ψUυ 〉,ε)(ρ) ≡ (1− ε)UυρU †υ + ε
I
p

(ε ≈ depolarizing error rate)

For what noise rates, ε, does E(|ψUυ 〉,ε)+ Cliffords enable UQC?

|+〉 E(|ψUυ 〉, ε) (1− ε) |ψUυ 〉〈ψUυ |+ ε I
p

|+〉

|0〉 E(|ψUυ 〉, ε)

|0〉

(1− ε′) |ψUυ 〉〈ψUυ |+ ε′ Ip

Π

Postselection “dilutes”
the noise: ε′ < ε.

Exact relationship:

ε′ =
ε

p− (p− 1)ε

Use this result, along with routines in [CAB‘12], to find allowable ε
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Noise thresholds for UQC

Lower Bound Upper Bound

p = 2 45.32% 45.32%
p = 3 58.15% 78.63%
p = 5 80.61% 95.20%
p = 7 72.24% 97.63%

Table: Bounds on threshold ε for UQC using noisy Uυ + ideal Cliffords

How are these values found?
Lower bound:

Postselction circuit & the best performing MSD routines given in [CAB‘12].

Upper bound:

Explicit facets of CLIFF for which Tr
(
W
[
(1− ε)|JU 〉〈JU |+ ε I

p2

])
= 0

Note: Uυ also maximally robust to phase damping noise (p = 2, 3, 5, 7, ?)
Open Question: Can the gaps be closed?
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Applications?
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CHSH Bell Inequality

〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 ≤ 2 (λ(Aj), λ(Bk) = ±1)

|+〉

|0〉

A0

A1

B0

B1




|00〉+|11〉√

2

Maximizing quantity 〈B〉 is
related to maximizing

∑

a+b=st mod 2
(a,b,s,t∈Z2)

p(a, b|s, t) where p(a, b|s, t) is a conditional prob.

settings

outcomes
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Generalized CHSH Bell Inequality for p = 3

〈B〉 ≤ 4.5 B =
∑

n∈Z∗3
j,k∈Z3

ωnjkAnjB
n
k (λ(Aj), λ(Bk) = {ω0, ω1, ω2})

|+〉

|0〉 Uυ

A0

A1

A2

B0

B1

B2

Maximizing quantity 〈B〉 is
related to maximizing

∑

a+b+st=0 mod 3
(a,b,s,t∈Z3)

p(a, b|s, t) where p(a, b|s, t) is a conditional prob.

settings

outcomes
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ωnjkAnjB
n
k (λ(Aj), λ(Bk) = {ω0, ω1, ω2})

|+〉

|0〉 Uυ

A0

A1

A2

B0

B1

B2

Aj = ωj(j+1)XZj

Bk = ωk(k+2)XZ2k

〈B〉 = 5.117 6≤ 4.5

Maximizing quantity 〈B〉 is
related to maximizing

∑

a+b+st=0 mod 3
(a,b,s,t∈Z3)

p(a, b|s, t) where p(a, b|s, t) is a conditional prob.

settings

outcomes
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Open Questions & Thanks

Are qudits better in any way?

How does one fairly compare qubits and qudits?

Physical system that enables topologically protected qudit Cliffords?
(cf. Ising anyons for p = 2)
What does the rest of C3 look like?
What does the diagonal subset of Ck look like?
Can we close the gap between upper and lower bounds on noise thresholds?
Are there applications in MUBs, SICs, Unitary designs?
Can stronger statements be made relating nonlocality and UQC in the
Clifford computer/magic state model of computation?

Thanks to Earl Campbell for many helpful discussions & comments
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