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Quantum Mechanics:

The Azioms and Our Imperative!

States correspond to density
operators p over a Hilbert space H.

Measurements correspond to positive
operator-valued measures (POVMs)
{Ed} on H.

‘H is a complex vector space,
not a real vector space, not a
quaternionic module.

Systems combine according to the tensor
product of their separate vector
spaces, Hag = Ha Q@ Hg.

Between measurements, states evolve
according to trace-preserving completely

positive linear maps.

By way of measurement, states evolve
(up to normalization) via outcome-

dependent completely positive linear maps.

Probabilities for the outcomes

of a measurement obey the Born rule
for POVMs tr(pEy).

Give an information theoretic

reason if possible!

Give an information theoretic

reason if possible!

Give an information theoretic
reason if possible!

Give an information theoretic
reason if possible!

Give an information theoretic
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Give an information theoretic

reason if possible!

Give an information theoretic

reason if possible!

The distillate that remains—the piece of quantum theory with no information
theoretic significance—will be our first unadorned glimpse of “quantum reality.”
Far from being the end of the journey, placing this conception of nature in open
view will be the start of a great adventure.




Hardy’s New Axioms

© Definiteness. Associated with any given pure state is a unique maximal
effect giving probability equal to one. This maximal effect does not give
probability equal to one for any other pure state.

@ Information Locality. A maximal measurement on a composite system is
effected if we perform maximal measurements on each of the components.

© Tomographic Locality. The state of a composite system can be
determined from the statistics collected by making measurements on the
components.

@ Compound Permutatability. There exists a compound reversible
transformation on any system effecting any given permutation of any given
maximal set of distinguishable states for that system.

© Preparability. Filters are non-mixing and non-flattening.



Chiribella, D’Ariano, and Perinotti's “5 Axioms and 1 Postulate”

@ Causality. The probability of a measurement outcome at a certain time
does not depend on the choice of measurements that will be performed
later.

@ Perfect Distinguishability. If a state is not completely mixed, then there
exists at least one state that can be perfectly distinguished from it.

© Ideal Compression. Every source of information can be encoded in a
suitable physical system in a lossless and maximally efficient fashion. Here
lossless means that the information can be decoded without errors and
maximally efficient means that every state of the encoding system
represents a state in the information source.

@ Local Distinguishability. If two states of a composite system are
different, then we can distinguish between them from the statistics of local
measurements on the component systems.

© Pure Conditioning. If a pure state of system AB undergoes an atomic
measurement on system A, then each outcome of the measurement
induces a pure state on system B.

O Purification. Every state has a purification. For fixed purifying system,
every two purifications of the same state are connected by a reversible
transformation on the purifying system.



Wilce’s “Four and a Half Axioms”

Let a physical system be modeled by a pair (U, 2), where U is a test space
with outcome-space X and 2 is a closed, convex, outcome-separating set of
continuous states thereon.

o

Q

Symmetry. There is a compact group G acting continuously on (i, ), in
such a way that (i) G acts fully symmetrically on U, and (ii) G acts
transitively on Qext-

Minimization. There exists a minimizing G-invariant, positive inner
product on V™.

Sharpness. To every outcome x € X, there corresponds a unique state
ex € Q with e(x) = 1.

Correlation. Every state is the marginal of a correlating non-signaling
state.

Filtering. For every test E and every f : E — (0, 1], there exists an
order-isomorphism ¢ : V* — V* with ¢(x) = f(x)x.
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[f one really understood the central point |of
quantum theory| and its necessity in the con-
struction of the world, one ought to be able to
state it in one clear, simple sentence. Until we
see the quantum principle with this simplicity
we can well believe that we do not know the
first thing about the universe ... and ... our
place in 1it.

— John Archibald Wheeler
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R. P. Feynman, “The Concept of Probability
in Quantum Mechanics,” 1951

The new theory asserts that there are experiments
for which the exact outcome is fundamentally unpre-
dictable, and that in these cases one has to be satisfied
with computing probabilities of various outcomes. But
far more fundamental was the discovery that in nature
the laws of combining probabilities were not those of the
classical probability theory ...

[ should say, that in spite of the implication of the
title of this talk the concept of probability is not altered
in quantum mechanics. When I say the probability of a
certain outcome of an experiment is p, I mean the con-
ventional thing ...

What s changed, and changed radically, is the
method of calculating probabilities.
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SIC POVMs and Clifford groups in prime

dimensions

Huangjun Zhu

Centre for Quantum Technologies, National University of Singapore, Singapore
117543, Singapore

NUS Graduate School for Integrative Sciences and Engineering, Singapore 117597,
Singapore

E-mail: zhuhuangjun@nus.edu.sg

Abstract. We show that in prime dimensions not equal to three, each group covariant
symmetric informationally complete positive operator valued measure (SIC POVM)
is covariant with respect to a unique Heisenberg-Weyl (HW) group. Moreover, the
symmetry group of the SIC POVM is a subgroup of the Clifford group. Hence, two
SIC POVMs covariant with respect to the HW group are unitarily or antiunitarily
equivalent if and only if they are on the same orbit of the extended Clifford group. In
dimension three, each group covariant SIC POVM may be covariant with respect to
three or nine HW groups, and the symmetry group of the SIC POVM is a subgroup of at
least one of the Clifford groups of these HW groups respectively. There may exist two or
three orbits of equivalent SIC POVMs for each group covariant SIC POVM, depending
on the order of its symmetry group. We then establish a complete equivalence relation
among group covariant SIC POVMs in dimension three, and classify inequivalent ones
according to the geometric phases associated with fiducial vectors. Finally, we uncover
additional SIC POVMs by regrouping of the fiducial vectors from different SIC POVMs
which may or may not be on the same orbit of the extended Clifford group.

PACS numbers: 03.65.-w, 03.65.Wj, 02.10.De, 03.67.-a
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Galois Automorphisms of a Symmetric Measurement

D.M. Appleby
Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

and

Stellenbosch Institute for Advanced Study, Stellenbosch, Matieland 7602, South
Africa

Hulya Yadsan-Appleby
Dept. of Physics and Astronomy, University College London, Gower St., London
WCIE 6BT, UK

Gerhard Zauner
Innovative Research, Engineering & Consulting (irec), Moslackengasse 17,
A-1190, Vienna, Austria

Abstract

SIC-POVMs (Symmetric Informationally Complete Positive Operator Valued
Measures) have been constructed in every dimension < 67. However, a proof
that they exist in every finite dimension has yet to be constructed. In this
paper we examine the Galois group of SIC-POVMs covariant with respect to
the Weyl-Heisenberg group, or WH SICs (the great majority, though not all
of the known examples are of this type). Scott and Grassl have noted that
every known exact WH SIC is expressible in radicals, which means that the
corresponding Galois group is solvable. They have also calculated the Galois
group for most known exact examples. The purpose of this paper is to take
the analysis of Scott and Grassl further. We first prove a number of theorems
regarding the structure of the Galois group and the relation between it and the
extended Clifford group. We then examine the Galois group for the known exact
fiducials and on the basis of this we propose a list of 8 conjectures concerning
its structure. These conjectures represent a considerable strengthening of the
theorems we have actually been able to prove. Finally we generalize the concept
of an anti-unitary to the concept of a g-unitary, and show that every WH SIC
fiducial is an eigenvector of a family of g-unitaries.
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We conclude this mtroductory section by drawing the reader’s attention to two
particularly striking points to emerge from our analysis. Let II be a fiducial pro-
jector. Let E be the smallest normal extension of QQ containing the standard basis
matrix elements of II and 7 = —e@. E only depends on the extended Clifford
group orbit to which IT belongs. It turns out that if d > 3 then E is an Abelian
extension of the real quadratic field

Q(V@=3)d+1)) (2)

for all 27 extended Clifford group orbits on which an exact fiducial is known. The
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Tight informationally complete quantum measurements

A. J. Scotf
Institute for Quantum Information Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada

We introduce a class of informationally complete positive-operator-valued measures which are, in
analogy with a tight frame, “as close as possible” to orthonormal bases for the space of quantum
states. These measures are distinguished by an exceptionally simple state-reconstruction formula
which allows “painless” quantum state tomography. Complete sets of mutually unbiased bases and
symmetric informationally complete positive-operator-valued measures are both members of this
class, the latter being the unique minimal rank-one members. Recast as ensembles of pure quantum
states, the rank-one members are in fact equivalent to weighted 2-designs in complex projective
space. These measures are shown to be optimal for quantum cloning and linear quantum state
tomography.

PACS numbers: 03.65.Wj,03.67.-a,02.10.Ud
Keywords: quantum measurement, informational completeness, frame theory, combinatorial design

I. INTRODUCTION

The retrieval of classical data from quantum systems, a task described by quantum measurement theory, is an
overlooked — though important — component of quantum information processing [1]. The ability to precisely determine
a quantum state is paramount to tests of quantum information processing devices such as quantum teleporters, key
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A Kochen-Specker inequality from a SIC

Ingemar Bengtsson,! Kate Blanchfield,! and Adéan Cabello??

1Stockholms Universitet, Fysikum, S-10691 Stockholm, Sweden
2 Departamento de Fisica Aplicada II, Universidad de Sevilla, E-41012 Sevilla, Spain
(Dated: October 7, 2011)

Yu and Oh [1] have given a state-independent proof of the Kochen-Specker theorem in three
dimensions using only 13 rays. The proof consists of showing that a non-contextual hidden variable
theory necessarily leads to an inequality that is violated by quantum mechanics. We give a similar
proof making use of 21 rays that constitute a SIC and four Mutually Unbiased Bases.

PACS numbers: 03.65.Ta, 03.65.Ud

Introduction.—The Kochen-Specker theorem states
that a certain kind of hidden variable theory cannot be
consistent with quantum mechanics. The idea is to as-
sign truth values (1 for true, 0 for false) to a finite set
of measurements represented by projectors onto rays in
Hilbert space. These assignments must obey the Kochen-
Specker rules, namely no two orthogonal projectors can
both be true, and one member of each complete orthonor-
mal basis must be true. Since two orthogonal projectors
commute they represent compatible measurements. Note
that the assignment made for a particular projector is in-
dependent of which particular set of mutually compatible
measurements it belongs to—even though it may belong

logically impossible. On the other hand the reformulation
of the Kochen-Specker theorem in terms of inequalities
has led to a number of recent experimental tests [9-13].
Using inequalities also has the incidental advantage that
the Kochen-Specker theorem can be proved over the ra-
tional numbers |14].

Our purpose is to give a state-independent proof along
the same lines as Yu and Oh, but starting from a con-
figuration of rays in three dimensions that is of inde-
pendent interest: a symmetric informationally-complete
POVM (SIC) and a complete set of mutually unbiased
bases (MUB). The resulting configuration of 21 rays is
highly symmetric, and we believe that it has some ad-


http://arxiv.org/abs/1109.6514v2
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[f one really understood the central point |of
quantum theory| and its necessity in the con-
struction of the world, one ought to be able to
state it in one clear, simple sentence. Until we
see the quantum principle with this simplicity
we can well believe that we do not know the
first thing about the universe ... and ... our
place in 1it.

— John Archibald Wheeler





