How to make quantum
query algorithms

by
Rajat Mittal
IQC, University of Waterloo.

Given: Function f: x —f(x)

>Xj

Least queries needed to evaluate f(x)

Given: Function f: x —f(x)

Q(f) = Least quantum queries needed to evaluate f(x)

Query Algorithm

=

)

-

O

~—

: 28

Unitary operators are free
Cost of algorithm = number of queries

Query algorithms

e Grover search
unordered search in O(y/n) queries
* AND/OR trees
e Element distinctness
e Graph collision
e Triangle finding

Many algorithms were given using
guantum walks.

Lower bounds on quantum query complexity

Polynomial bound [BBCMW ‘01]: Adversary bound [A ‘02]:

e Separation [A ‘03] e SDP [BSS ‘03]
e Element Distinctness [AS ‘04] » Equivalence [SS ‘06]
e Direct products [KSdW ‘07] o Multiplicative [S ‘08]

o Adv(f) [HLS 07]

Lower bounds on quantum query complexity

Polynomial bound [BBCMW ‘01]: Adversary bound [A ‘02]:

e Separation [A ‘03] e SDP [BSS ‘03]
* Element Distinctness [AS ‘04] » Equivalence [SS ‘06]
» Direct products [KSdW ‘07] * Multiplicative [S ‘08]

o AdvE(f) [HLS ‘07]

For any boolean function f:

Q(f) = O(Adv*(f))
IR ‘0]

Vector set

Vector set : construction
Query algorithm for f : D — {0,1}

Construct vectors for
every element of D™ and [n]

X y - Z
1 Uy 1 Uy 1 . Uy 1
ux l uW l

Vector set : Example

Query algorithm for f : {0,1}"* — {0,1}

000 001 . 111
1 Upoo,1 Uoo01,1 - U1111
Upoo0,i : U101,i

n Upoo,n Upo1,n : U110

Query algorithm for f: D™ — {0,1}

Follow constraint for V x € f~1(0),y € f~1(1).

X y
Uy i Uy i

Query algorithm for f: D™ — {0,1}

Follow constraint for V x € f~1(0),y € f~1(1).

X y product
1 Uy1 Uy < Uy, Uyq > (X1 F Y1)
+
Uyi Uy < Ui, Uy > (X F Vi)
+
n ux,n uy,n < ux,n’ uy,n > . (le #: yn)

Z(xi:t) < Uy is uy,l- >=1 ‘v’x,y.

The dual of adversary bound

e Vector set : solution of the dual of adversary
bound

e The value of the solution :
max (length of u,)

zepn

2
max () [|uz,]|*)
l

» The value of best construction : Q(f)

Algorithmic applications

Q. Can we develop algorithms using solution of dual?
A. Not easy, because of the great number of constraints in SDP.

1.Formula evaluation [FGG07,RS08]
(optimal formula evaluation algorithms
for any read-once formula)

Algorithmic applications

Q. Can we develop algorithms using filtered factorization norm?
A. Not easy, because of the great number of constraints in SDP.

(Element Distinctness and n'-22°

|

|

|

2. Learning graphs [Bel11] ;
|

algorithm for Triangle Finding)

0

/ l
Cut 1_certificate

Outline

e Span programs
e Learning graphs
o Comparison

e Open problems

Span Programs

Span program

e For a function f: {0,1}"* — {0,1}

1,0 11 2,0 . n,0 n,1 free
6 5 3 3 4
5 2 8 2 1
8 4 4, 2 3

Span program

Useful vectors for z € {0,1}" :
free vectors + vectors in column j, z;

1.0 11 20 . . n0 n1 free
6 5 . . . 3| 3 4
5 2 8 2 1

3 4 4, 2 3

Useful vectors for z € {0,1}" :
free vectors + vectors in column j, z;

f)=1=
t : as linear combination of useful vectors for y

Withess: The coefficients of linear combination

Witness size : The length of withess vector

Useful vectors for z € {0,1}:
free vectors + vectors in column j, z;

fx)=0 =

t: NOT a linear combination of useful vectors for x
Witness: w: (<w,t>=1) & (<w,v> =0, if v useful).

Witness size: The length of Aw.

Equivalence to dual solution

e Every span program can be converted to a
canonical span program

Fixed vector space for columns
No free vectors

e Canonical span program is equivalent to a
solution of dual adversary.

o Complexity of best span program is the query
complexity of f.

Features

e Easy to manipulate span programs
Complementation
Composition

e Optimal formula evaluation algorithms

* These were used to show query algorithms using
adversary bound.

Learning Graph

Learning graph

e For afunctionf: D" — {0,1}
e Need to construct a graph

Vertex: S C |n]

Edge: j € [n]

Learning graph

e For afunctionf: D" — {0,1}
e Need to construct a graph

Edges:
($)ASUG) s <lnlj en)

Every edge has weight w,

Flow for 1-input

e Forevery y € f71(1), there is a flow of value 1

Source: The empty vertex @ @

Sink: Any “1-certificate”. @ @

Flow in edge e: p.(y) @ @
1-certificate
(depends onN @}

Complexity of learning graph

C° = max),w, @

X
I R B
y

We
279

C = V(COC!

Reduction

e Convert learning graph into vector construction

For every edge S — S U {j}:
need 215! coordinates in u, ;

j, e, a (S) «—— Assignmenton S

Uy Vv We
Pe(y)
Uy

Constraint for dual adversary

= Ye:cut Pe (V)
= 1 (value of the flow)

Important results
e Element distinctness:

2
Showed the previous bound of 0 (n3)

e Triangle finding:
Improved the upper bound to 0(n!2%¢)

» k-element distinctness:
Improved under certain conditions

Limitations and improvement

e Certificate complexity barrier
Learning graph complexity > 1-certificate complexity

» Alphabet size barrier
Only depends on certificate structure

e Improved learning graph : overcomes both barriers
Gives better complexity for “OR of AND”

Comparison

Span Program
e Easy to manipulate

e Equivalent to dual

o 77777

Learning graph
o Can’t compose it well

e \Weaker than dual

e Easy to construct

Solution of dual Learning graph /

adversary Span programs
* VXy: (ux‘vy) = ... * VX ..

e Symmetric * Vy:..

. Tight * Intuitive

Separation of constraints really help
Need more combinatorial constructions to make
query algorithms

Open problems

Constructing dual solution

* Need other techniques to construct dual solution.
Easy to manipulate
Easy to construct
Tight

e Dual of “positive” adversary
Z(xii V) < ux’i, uy’i > > 1
When is positive adversary tight ?

Other query algorithms

e Graph collision
Important in triangle finding.

e Triangle finding

e k-element distinctness

Thank you

