How to make quantum query algorithms

by Rajat Mittal IQC, University of Waterloo.

Given: Function $f: x \mapsto f(x)$

Least queries needed to evaluate f(x)

Q(f) = Least quantum queries needed to evaluate f(x)

Query Algorithm

Unitary operators are free Cost of algorithm = number of queries

Query algorithms

• Grover search

unordered search in $O(\sqrt{n})$ queries

- AND/OR trees
- Element distinctness
- Graph collision
- Triangle finding

Many algorithms were given using quantum walks.

Lower bounds on quantum query complexity

Polynomial bound [BBCMW '01]:

- Separation [A '03]
- Element Distinctness [AS '04]
- Direct products [KŠdW '07]

Adversary bound [A '02]:

- SDP [BSS '03]
- Equivalence [ŠS '06]
- Multiplicative [Š '08]
- Adv[±](f) [HLŠ '07]

Lower bounds on quantum query complexity

Polynomial bound [BBCMW '01]:

- Separation [A '03]
- Element Distinctness [AS '04]
- Direct products [KŠdW '07]

Adversary bound [A '02]:

- SDP [BSS '03]
- Equivalence [ŠS '06]
- Multiplicative [Š '08]
- Adv[±](f) [HLŠ '07]

For any boolean function f: $Q(f) = \Theta(Adv^{\pm}(f))$ [R '09]

Vector set

Vector set : construction Query algorithm for $f : D^n \longrightarrow \{0,1\}$

Construct vectors for every element of D^n and [n]

Ζ X . . . 1 . $u_{x,1}$ $u_{y,1}$ $u_{z,1}$ $u_{w,i}$ $u_{x,i}$. • n $u_{x,n}$ $u_{y,n}$ $u_{z,n}$

Vector set : Example

Query algorithm for f : $\{0,1\}^n \longrightarrow \{0,1\}$

	000	001		111
1	$u_{000,1}$	$u_{001,1}$	•	$u_{111,1}$
•				
•	$u_{000,i}$		$u_{101,i}$	•
•				
n	$u_{000,n}$	$u_{001,n}$		$u_{111,n}$

Query algorithm for $f: D^n \longrightarrow \{0,1\}$

Follow constraint for $\forall x \in f^{-1}(0), y \in f^{-1}(1)$.

Query algorithm for $f: D^n \longrightarrow \{0,1\}$

Follow constraint for $\forall x \in f^{-1}(0), y \in f^{-1}(1)$.

1 x y product $u_{x,1}$ $u_{y,1}$ $< u_{x,1}, u_{y,1} > . (x_1 \neq y_1)$. $u_{x,i}$ $u_{y,i}$ $< u_{x,i}, u_{y,i} > . (x_i \neq y_i)$ $u_{x,n} \ u_{y,n} \ < u_{x,n}, \ u_{y,n} > . (x_n \neq y_n)$ n $\sum_{(x_i \neq y_i)} < u_{x,i}, u_{y,i} > = 1 \qquad \forall x, y.$

The dual of adversary bound

- Vector set : solution of the dual of adversary bound
- The value of the solution : $\max_{z \in D^{n}} (\text{length of } u_{z})$ $\max_{z \in D^{n}} (\sum_{i} ||u_{z,i}||^{2})$
- The value of best construction : Q(f)

Algorithmic applications

Q. Can we develop algorithms using solution of dual?

A. Not easy, because of the great number of constraints in SDP.

1. Formula evaluation [FGG07,RŠ08] (optimal formula evaluation algorithms for any read-once formula)

Algorithmic applications

Q. Can we develop algorithms using filtered factorization norm?

A. Not easy, because of the great number of constraints in SDP.

2. Learning graphs [Bel11] (Element Distinctness and $n^{1.296}$ algorithm for Triangle Finding)

Outline

- Span programs
- Learning graphs
- Comparison
- Open problems

Span Programs

Span program

• For a function $f: \{0,1\}^n \longrightarrow \{0,1\}$

Span program

Useful vectors for $z \in \{0,1\}^n$: free vectors + vectors in column j, z_j

Useful vectors for $z \in \{0,1\}^n$: free vectors + vectors in column j, z_j

 $f(y) = 1 \; \Rightarrow \;$

t : as linear combination of useful vectors for y

Witness: The coefficients of linear combination

Witness size : The length of witness vector

Useful vectors for $z \in \{0,1\}^n$: free vectors + vectors in column j, z_j

 $f(x) = 0 \Rightarrow$ t: NOT a linear combination of useful vectors for x

Witness: w: $(\langle w, t \rangle = 1) \& (\langle w, v \rangle = 0, if v useful).$

Witness size: The length of Aw.

Equivalence to dual solution

- Every span program can be converted to a canonical span program
 Fixed vector space for columns
 No free vectors
- Canonical span program is equivalent to a solution of dual adversary.
- Complexity of best span program is the query complexity of f.

Features

- Easy to manipulate span programs Complementation Composition
- Optimal formula evaluation algorithms
- These were used to show query algorithms using adversary bound.

Learning Graph

Learning graph

- For a function $f: D^n \longrightarrow \{0,1\}$
- Need to construct a graph

Learning graph

- For a function $f: D^n \longrightarrow \{0,1\}$
- Need to construct a graph

Flow for 1-input

• For every $y \in f^{-1}(1)$, there is a flow of value 1

Complexity of learning graph

$$C^{0} = \max_{x} \sum_{e} w_{e}$$
$$C^{1} = \max_{y} \sum_{e} \frac{p_{e}(y)^{2}}{w_{e}}$$

$$C = \sqrt{C^0 C^1}$$

Reduction

Convert learning graph into vector construction

For every edge $S \rightarrow S \cup \{j\}$: need $2^{|S|}$ coordinates in $u_{z,j}$

Constraint for dual adversary

Important results

Element distinctness:

Showed the previous bound of $O(n^{\frac{2}{3}})$

- Triangle finding: Improved the upper bound to $O(n^{1.296})$
- k-element distinctness: Improved under certain conditions

Limitations and improvement

- Certificate complexity barrier
 Learning graph complexity ≥ 1-certificate complexity
- Alphabet size barrier
 Only depends on certificate structure
- Improved learning graph : overcomes both barriers Gives better complexity for "OR of AND"

Comparison

Span Program

- Easy to manipulate
- Equivalent to dual
- ?????

Learning graph

- Can't compose it well
- Weaker than dual
- Easy to construct

Solution of dual adversary

Learning graph / Span programs

- $\forall x, y: \langle u_x | v_y \rangle = \dots$
- Symmetric
- Tight

- ∀ x: ...
- \forall y: ...
- Intuitive

Separation of constraints really help Need more combinatorial constructions to make query algorithms

Open problems

Constructing dual solution

- Need other techniques to construct dual solution.
 Easy to manipulate
 Easy to construct
 Tight
- Dual of "positive" adversary $\sum_{(x_i \neq y_i)} < u_{x,i}, u_{y,i} > \ge 1$ When is positive adversary tight ?

Other query algorithms

• Graph collision

Important in triangle finding.

- Triangle finding
- k-element distinctness

Thank you