
by
Rajat Mittal

IQC, University of Waterloo.

How to make quantum
query algorithms

 x j

Least queries needed to evaluate f(x)

Given: Function)

 x |

|

 = Least quantum queries needed to evaluate f(x)

Given: Function)

|

Query Algorithm

Unitary operators are free
 Cost of algorithm = number of queries

| |

Query algorithms
Grover search

 unordered search in O() queries
AND/OR trees
Element distinctness
Graph collision
Triangle finding

Many algorithms were given using

quantum walks.

Lower bounds on quantum query complexity

Adversary bound :
SDP

Equivalence]

Multiplicative]

(f)

Polynomial bound]:
Separation]

Element Distinctness]

Direct products [

Lower bounds on quantum query complexity

Adversary bound :
SDP

Equivalence]

Multiplicative]

(f)

Polynomial bound]:
Separation]

Element Distinctness]

Direct products [

For any boolean function f:

[

Vector set

Vector set : construction
Query algorithm for f :

Construct vectors for
 every element of and

 x y . . . Z
 1 .
 .
 . . .
 .
 n .

Vector set : Example
Query algorithm for f : 0,1}

 000 001 . . . 111
 1 .
 .
 . . .
 .
 n .

Query algorithm for f :

Follow constraint for .

 x y
 1
 .
 .

 n

Query algorithm for f :

Follow constraint for .

 x y product
 1 < ,
 . +
 . < ,
 . +
 n < ,

 .

The dual of adversary bound

Vector set : solution of the dual of adversary
bound

The value of the solution :

The value of best construction : Q(f)

Algorithmic applications

Q. Can we develop algorithms using solution of dual?
A. Not easy, because of the great number of constraints in SDP.

1.
(optimal formula evaluation algorithms

for any read-once formula)

Algorithmic applications

Q. Can we develop algorithms using filtered factorization norm?
A. Not easy, because of the great number of constraints in SDP.

2. Learning graphs [Bel11]
(Element Distinctness and
algorithm for Triangle Finding)

s
t

Cut 1-certificate

Outline

Span programs

Learning graphs

Comparison

Open problems

Span Programs

Span program

For a function f :

 1,0 1,1 2,0 . . n,0 n,1 free t
 6 5 . . . 3 3 4 1
 5 2 . . . 8 2 1 3

 8 4 . . . 4 2 3 1

target

Span program

 1,0 1,1 2,0 . . n,0 n,1 free t
 6 5 . . . 3 3 4 1
 5 2 . . . 8 2 1 3

 8 4 . . . 4 2 3 1

target

Useful vectors for
 free vectors + vectors in column

Useful vectors for
 free vectors + vectors in column

 t : as linear combination of useful vectors for y

Witness: The coefficients of linear combination

Witness size : The length of witness vector

Useful vectors for :
 free vectors + vectors in column

 t : NOT a linear combination of useful vectors for x

Witness: w: (<w,t> =1) & (<w,v> = 0, if v useful).

Witness size: The length of Aw.

Equivalence to dual solution
Every span program can be converted to a
canonical span program

 Fixed vector space for columns
 No free vectors

Canonical span program is equivalent to a
solution of dual adversary.

Complexity of best span program is the query
complexity of f.

Features
Easy to manipulate span programs

 Complementation
 Composition

Optimal formula evaluation algorithms

These were used to show query algorithms using
adversary bound.

Learning Graph

Learning graph
For a function f :
Need to construct a graph

{2} {5}

{2,7}
{5,2}

{5,7}

{2,7,5}

Vertex:

Edge:

Learning graph
For a function f :
Need to construct a graph

{2} {5}

{2,7}
{5,2}

{5,7}

{2,7,5}

Edges:

Every edge has weight

j	

Flow for 1-input

For every , there is a flow of value 1

Source: The empty vertex

Sink: -

Flow in edge e:

{2} {5}

{2,7}
{5,2}

{5,7}

{2,7,9}

1-certificate
(depends on y)

Complexity of learning graph

{2} {5}

{2,7}
{5,2}

{5,7}

{2,7,9}

Reduction
Convert learning graph into vector construction

 need coordinates in

 j, e, (S)

Assignment on S

Constraint for dual adversary

Constraint:

 =

 =
 = 1 (value of the flow)

{2} {5}

{2,7}
{5,2}

{5,7}

{2,7,9}

Cut

Important results
Element distinctness:

 Showed the previous bound of

Triangle finding:
 Improved the upper bound to

k-element distinctness:
 Improved under certain conditions

Limitations and improvement
Certificate complexity barrier

 Learning graph complexity 1-certificate complexity

Alphabet size barrier
 Only depends on certificate structure

Improved learning graph : overcomes both barriers

Comparison

Span Program Learning graph
Easy to manipulate

Equivalent to dual

 ?????

Weaker than dual

Easy to construct

Solution of dual
adversary

Symmetric
Tight

Learning graph /
Span programs

Intuitive

Separation of constraints really help
Need more combinatorial constructions to make

query algorithms

Open problems

Constructing dual solution
Need other techniques to construct dual solution.

 Easy to manipulate
 Easy to construct
 Tight

 When is positive adversary tight ?

Other query algorithms

Graph collision
 Important in triangle finding.

Triangle finding

k-element distinctness

Thank you

