Explicit bounds on the entangled value of multiplayer XOR games

Jop Briët

Joint work with Thomas Vidick (MIT)

Waterloo, 2012

Entanglement and nonlocal correlations

- [Bell64] Measurements on entangled quantum systems can give outcomes that are correlated in a non-classical way

Qualitative picture of Bell's Theorem

$\operatorname{Pr}[a, b \mid x, y]$

Classical (LHV)

Nonlocal games

- [CHTW04] Use nonlocal games to quantitatively study entanglement

randomly selected questions
noncommunicating players
answers

- Given predicate $f:(a, b, x, y) \mapsto\{$ WIN, LOSE $\}$ known to both players
- compare the maximum winning probability with entanglement to the maximum winning probability without entanglement

Main question

How much advantage can entanglement give in nonlocal games?
... in terms of

- the number of possible questions
- the number of possible answers
- the local Hilbert space dimension of the shared state
- the number of players?

General games

Projection games

Unique games

Binary games

XOR games

XOR games

- $A \in\{-1,1\}^{n \times n}$, probability distribution $\pi:[n] \times[n] \rightarrow[0,1]$

- The players win iff $x y=A_{i j}$, equivalently iff $A_{i j} x y=+1$.

Example: The CHSH Game

- Alice and Bob win iff $H_{i j} x y=+1$
- Classically, Alice and Bob win with prob. at most 3/4
- but by sharing an EPR pair $(|00\rangle+|11\rangle) / \sqrt{2}$, with prob. 0.85 !

The bias

- Note that XOR games can always be won with prob. $\geq 1 / 2$
- For random bits x, y, we have $\operatorname{Pr}\left[A_{i j} x y=+1\right]=1 / 2$

- The bias equals $1 / 2$ times

$$
\operatorname{Pr}[\text { win }]-\operatorname{Pr}[\text { lose }]=\mathbb{E}_{i, j}\left[A_{i j} x_{i} y_{j}\right]
$$

where $x_{i}, y_{j} \in\{-1,1\}$ are answers to questions i, j, resp.

- The advantage of entanglement is measured by the ratio of the entangled and classical biases

The classical bias

- For XOR game $G=(\pi, A)$ and $M_{i j}=\pi(i, j) A_{i j}$, the classical bias is given by

$$
\beta(G)=\max \sum_{i, j} M_{i j} x_{i} y_{j}, \quad \text { such that } x_{i}, y_{j} \in\{-1,1\}
$$

The entangled bias

- A $\{-1,1\}$-valued observable is a Hermitian matrix with ± 1 eigenvalues
- For XOR game $G=(\pi, A)$ and $M_{i j}=\pi(i, j) A_{i j}$, the entangled bias is given by

$$
\begin{aligned}
\beta^{*}(G)= & \max \sum_{i, j} M_{i j}\langle\psi| X_{i} \otimes Y_{j}|\psi\rangle, \\
& \text { such that }|\psi\rangle \text { is a state and } X_{i}, Y_{j} \text { are } \\
& \{-1,1\} \text {-valued observables }
\end{aligned}
$$

Thm. (Tsirelson). The following identity holds true:

$$
\beta^{*}(G)=\max \sum_{i, j} M_{i j}\left\langle u_{i}, v_{j}\right\rangle, \quad \text { such that } \quad\left\|u_{i}\right\|_{2}=\left\|v_{j}\right\|_{2}=1
$$

Grothendieck's inequality

Thm. (Grothendieck). There exists a universal constant K_{G} such that for any XOR game G, we have

$$
\beta^{*}(G) \leq K_{G} \beta(G)
$$

- To this day, the exact value of K_{G} is unknown
- Davie (1984) and Reeds (1991) proved $K_{G} \gtrsim 1.68 \ldots$
- Braverman, Makarychev, Makarychev and Naor (2011)

$$
K_{G}<\frac{2}{\pi \ln (1+\sqrt{2})}=1.78 \ldots
$$

- To observe larger contrast between classical and entangled systems, we need more general games than XOR games.
- There are two directions for generalization

First direction: Moving up

Second direction: Moving sideways

- Stick with XOR games, but increase the number of players

- Involves multipartite entanglement, which is still poorly understood
- This is the direction we consider for the rest of this talk

Three-player XOR games

- Tensor $M:[n] \times[n] \times[n] \rightarrow[-1,1]$ known to all players

- Players win if $\operatorname{sgn}\left(M_{i j k}\right) x y z=+1$
- Can be won with prob. $1 / 2$ by flipping coins

The classical bias in three-player XOR games

- The classical bias is given by

$$
\beta\left(G_{M}\right)=\max \sum_{i, j, k} M_{i j k} x_{i} y_{j} z_{k}, \quad \text { such that } x_{i}, y_{j}, z_{k} \in\{-1,1\}
$$

The entangled bias in three-player XOR games

- The entangled bias is given by

$$
\beta^{*}(G)=\sup \sum_{i, j, k} M_{i j k}\langle\psi| X_{i} \otimes Y_{j} \otimes Z_{k}|\psi\rangle
$$

such that $|\psi\rangle$ is a state and X_{i}, Y_{j}, Z_{k} are $\{-1,1\}$-valued observables

Unbounded bias ratio in 3-player XOR games

Thm. [Pérez-García et al. 08] For any $R \geq 1$, there exists a 3-player XOR game with bias ratio $\beta^{*} / \beta \geq R$

- Striking in light of Tsirelson's bound for $2 p$ XOR games. There is no "tripartite" Grothendieck inequality in this sense
- Uses local Hilbert space dimension $O\left(R^{2}\right)$ for Alice (optimal), but the dimensions for Bob and Charlie are unbounded
- The game is quite large: Alice gets $O\left(R^{8}\right)$ questions, but Bob and Charlie up to $\exp (R)$
- Highly non-explicit existence proof based on deep results from operator space theory

Our main result

Thm. [B, Vidick] For any integer $N=2^{n}$ there exists a three-player XOR game G_{N} such that

$$
\beta^{*}\left(G_{N}\right) \geq \widetilde{\Omega}(\sqrt{N}) \beta\left(G_{N}\right)
$$

- Moreover, the game G_{N} has N^{2} questions per player (close to optimal)
- There is an entangled strategy achieving this gap with N dimensions per player (optimal) and only "Pauli observables"

Proof sketch of the construction

- The proof involves three steps:

1. Construct a $3 p \times O R$ game from any matrix with appropriate size
2. Relate classical and entangled biases to spectral properties of the matrix
3. Use the probabilistic method to prove existence of a matrix with good spectral properties

Step 1: The Pauli-Fourier expansion

- The n-qubit Pauli matrices $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right\}^{\otimes n}$ form a basis for the space of N -by- N matrices

Pauli-Fourier coefficient

Step 1: The Pauli-Fourier expansion

- The n-qubit Pauli matrices $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right\}^{\otimes n}$ form a basis for the space of N -by- N matrices

Pauli-Fourier coefficient

Step 1: The game

- Given a Hermitian matrix M of size $2^{3 n}$, suitably normalized
- pick n-qubit Paulis P, Q, R with prob. $\left|\widehat{M}_{P Q R}\right|$

- Players win iff $\operatorname{sgn}\left(\widehat{M}_{P Q R}\right) x y z=+1$
- The game tensor is given by $\left(\widehat{M}_{P Q R}\right)_{P, Q, R}$

Step 2: Upper bound on the classical bias

- We have $\widehat{M}_{P Q R}=\langle M, P \otimes Q \otimes R\rangle$
- Plug this into the expression for the classical bias

$$
\begin{aligned}
\beta\left(G_{M}\right) & =\sum_{P, Q, R} \widehat{M}_{P Q R} x_{P} y_{Q} z_{R} \\
& =\sum_{P, Q, R}\langle M, P \otimes Q \otimes R\rangle x_{P} y_{Q} z_{R} \\
& =\langle M, \underbrace{\left(\sum_{P} x_{P} P\right)}_{X} \otimes \underbrace{\left(\sum_{Q} y_{Q} Q\right)}_{Y} \otimes \underbrace{\left(\sum_{R} z_{R} R\right)}_{Z}\rangle
\end{aligned}
$$

- The matrices X, Y, Z are Hermitian and have Frobenius norm norm less than $N^{3 / 2}$

Step 2: Upper bound on the classical bias

- Define the 2-2-2 norm of M by

$$
\|M\|_{2,2,2}=\max \langle M, X \otimes Y \otimes Z\rangle
$$

$$
\text { s.t. } X, Y, Z \text { Hermitian, }\|X\|_{F},\|Y\|_{F},\|Z\|_{F} \leq 1
$$

- The classical bias of the Pauli-Fourier game G_{M} is thus bounded by

$$
\beta\left(G_{M}\right) \leq N^{9 / 2}\|M\|_{2,2,2}
$$

Step 2: Lower bound on the entangled bias

- A lower bound on the entangled bias of G_{M} can also be obtained easily from the Pauli Fourier expansion of M
- Since the Pauli matrices are observables, we have for any $|\psi\rangle$

$$
\begin{aligned}
\beta^{*}\left(G_{M}\right) & \geq \sum_{P, Q, R} \widehat{M}_{P Q R}\langle\psi| P \otimes Q \otimes R|\psi\rangle \\
& =\langle\psi| \sum_{P, Q, R} \widehat{M}_{P Q R} P \otimes Q \otimes R|\psi\rangle \\
& =N^{3}\langle\psi| M|\psi\rangle
\end{aligned}
$$

- This gives a lower bound in terms of the spectral norm

$$
\beta^{*}\left(G_{M}\right) \geq N^{3}\|M\|
$$

Step 2: Putting the spectral bounds together

- Putting the bounds on the biases together gives for any Hermitian N^{3}-by- N^{3} matrix M,

$$
\frac{\beta^{*}\left(G_{M}\right)}{\beta\left(G_{M}\right)} \geq N^{-3 / 2} \frac{\|M\|}{\|M\|_{2,2,2}}
$$

- Now, to find a good matrix M

Step 3: Finding a good matrix

- We use the probabilistic method
- Let $|g\rangle \sim \mathcal{N}(0,1)^{N^{3}}$ be a Gaussian vector and set

$$
M_{(i j k),\left(i^{\prime} j^{\prime} k^{\prime}\right)}= \begin{cases}0 & \text { if } i=i^{\prime} \vee j=j^{\prime} \vee k=k^{\prime} \\ |g\rangle\left\langle\left. g\right|_{(i j k),\left(i^{\prime} j^{\prime} k^{\prime}\right)}\right. & \text { otherwise }\end{cases}
$$

- Since M is "close" to the rank-1 matrix $|g\rangle\langle g|$, it is easy to lower bound $\|M\|$
- Set $|\psi\rangle=N^{-3 / 2}|g\rangle$. Then a χ^{2}-tail-bound gives that whp

$$
\|M\| \geq\langle\psi| M|\psi\rangle \geq C N^{3}
$$

Step 3: Upper bounding the 2-2-2 norm

- \exists traceless Hermitian X, Y, Z in the Frobenius ball s.t.

$$
\|M\|_{2,2,2}=\langle g| X \otimes Y \otimes Z|g\rangle-\underbrace{\operatorname{Tr}(X \otimes Y \otimes Z)}_{0}
$$

- By a standard decomposition, we may restrict to normalized projectors (wrt Frobnenius norm) $X^{\prime}, Y^{\prime}, Z^{\prime}$, at a small loss:

$$
\|M\|_{2,2,2} \lesssim \max \langle g| X^{\prime} \otimes Y^{\prime} \otimes Z^{\prime}|g\rangle-\operatorname{Tr}\left(X^{\prime} \otimes Y^{\prime} \otimes Z^{\prime}\right)
$$

Lem. (Latała). For Gaussian vector $|h\rangle$ and matrix A, $\langle h| A|h\rangle-\operatorname{Tr}(A)$ is concentrated around 0

- A delicate ε-net argument over normalized projectors gives that whp, $\|M\|_{2,2,2} \leq \widetilde{O}(N)$

Putting everything together

- We have shown:

1. For any $N^{3} \times N^{3}$ matrix M, there is a 3-player XOR game G_{M} such that

$$
\frac{\beta^{*}\left(G_{M}\right)}{\beta\left(G_{M}\right)} \geq N^{-3 / 2} \frac{\|M\|}{\|M\|_{2,2,2}}
$$

2. There is a distribution over matrices M such that whp, both

$$
\|M\| \geq C N^{3} \quad \text { and } \quad\|M\|_{2,2,2} \leq \widetilde{O}(N)
$$

hold
3. Hence, there is a matrix M s.t. $\beta^{*}\left(G_{M}\right) \geq \widetilde{\Omega}(\sqrt{N}) \beta\left(G_{M}\right)$

Upper bounds on the maximum bias ratio

Upper bounds on the maximum bias ratio

Thm. [B, Vidick] For a three-player XOR game G with Q questions per player,

$$
\beta^{*}(G) \leq K_{G} Q^{1 / 2} \beta(G)
$$

- Our lower bound gave a factor of $\approx Q^{1 / 4}$
- Our gaps are nearly optimal (quadratically off) in terms of the size of the game

Proof outline of the upper bound

- The proof involves two steps:

1. Upper bound the ratio if Charlie is classical
2. Show that a quantum Charlie can be made classical at a loss of $1 / \sqrt{Q}$ in the bias

Step 1: Suppose that Charlie is classical

Claim. In this case, the bias ratio is at most a constant

- To each question $k \in[Q]$, Charlie answers with a classically obtained bit $z_{k} \in\{-1,1\}$
- After Charlie gets his question, Alice and Bob are left to play a two-player XOR game:
- to win, they have to answer bits x_{i} and y_{j} such that

$$
M_{i j k} x_{i} y_{j} z_{k}=+1
$$

- Since they don't know Charlie's question, they must use the same strategy for each k
- But by Tsirelson/Grothendieck, entanglement gives Alice and Bob at most a constant-factor advantage in the bias

Step 2: Making a quantum Charlie classical

Claim. A quantum Charlie gives at most a \sqrt{Q}-factor advantage over a classical Charlie

- For i.i.d. symmetric $\{-1,1\}$-valued random variables z_{1}, \ldots, z_{Q}, we have

$$
\mathbb{E}\left[z_{i} z_{j}\right]=\delta_{i j}
$$

- Let C_{1}, \ldots, C_{Q} be Charlie's observables. Then,

$$
\mathbb{E} z_{i}\left(\sum_{j=1}^{Q} z_{j} C_{j}\right)=C_{i}
$$

- On average over the $z_{i} s$, the matrix $z_{1} C_{1}+\cdots+z_{Q} C_{Q}$ squares to Q times the identity matrix
- Cauchy-Schwarz gives an instantiation of the $z_{i} s$ (a classical strategy) that drop by bias by at most a factor \sqrt{Q}

Open problems

- Find an explicit matrix satisfying the spectral properties proved possible by our probabilistic argument
- Close the gap between upper and lower bounds on the number of questions needed for a given bias ratio
- Remove the log factor in our upper bound on $\|M\|_{2,2,2}$
- Find out if unbounded ratios between the classical and entangled biases are possible for $\beta^{*} \approx 1 / 2$

Thank you!

arXiv:1108.5647 [quant-ph]

