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Entanglement and nonlocal correlations

[Bell64] Measurements on entangled quantum systems can
give outcomes that are correlated in a non-classical way

measurement settings

entangled
quantum systems

a measurement outcomes b



Qualitative picture of Bell's Theorem
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Nonlocal games

[CHTWO04| Use nonlocal games to quantitatively study
entanglement

X randomly selected questions _y
2
> ™) .
|\ 6 noncommunicating players
,/\(
a answers

Given predicate f : (a, b, x,y) — {WIN, LOSE} known to
both players

compare the maximum winning probability with entanglement
to the maximum winning probability without entanglement



Main question

How much advantage can entanglement give in nonlocal games?
..in terms of

the number of possible questions

the number of possible answers

the local Hilbert space dimension of the shared state

the number of players?



General games

Projection games

Unique games

Binary games

XOR games



XOR games
A€ {—1,1}"", probability distribution 7 : [n] x [n] — [0, 1]

i€ [n] J € [n]
l random questions (i,j) ~ 7
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The players win iff xy = Aj;, equivalently iff Aj;xy = +1.



Example: The CHSH Game

l answers

x = +1

Alice and Bob win iff Hjjxy = +1
Classically, Alice and Bob win with prob. at most 3/4
but by sharing an EPR pair (|00) + |11))/v/2, with prob. 0.85!



The bias

Note that XOR games can always be won with prob. > 1/2

For random bits x, y, we have Pr[A;xy = +1] = 1/2

e

0 1/2  Prlwin] 1

The bias equals 1/2 times
Prwin] — Pr[lose] = E; ; [A,-j x,-yj]
where x;, y; € {—1,1} are answers to questions /, j, resp.

The advantage of entanglement is measured by the ratio of
the entangled and classical biases



The classical bias

For XOR game G = (7, A) and Mj; = 7(i,j)Aj;, the classical
bias is given by

B(G) = max Z Mij xiyj, such that x;,y; € {—1,1}
iJj



Thm.

The entangled bias

A {—1,1}-valued observable is a Hermitian matrix with £1
eigenvalues

For XOR game G = (7, A) and Mj; = (i, j)Aj;, the entangled
bias is given by
F(G) = max ) My (¥|Xi @ Yilv),
i
such that |[¢)) is a state and Xj, Y; are

{—1,1}-valued observables

(Tsirelson). The following identity holds true:

B°(G) =max Y Mj(u;,v;),  suchthat [lujlla = [|vj[> = 1
ij



Grothendieck’s inequality

Thm. (Grothendieck). There exists a universal constant K¢ such
that for any XOR game G, we have

5°(G) < Ke B(G)
To this day, the exact value of K¢ is unknown
Davie (1984) and Reeds (1991) proved K; > 1.68. ..

Braverman, Makarychev, Makarychev and Naor (2011)
2
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To observe larger contrast between classical and entangled
systems, we need more general games than XOR games.

There are two directions for generalization



First direction: Moving up

Projection

[JPPT10, JP11] Upper
bounds on the advantage
in terms of the number of
questions, answers and
dimensions

[BRSW11] Near-optimal
lower bounds

Disadvantage: complex
measurements that may
be hard to implement
experimentally



Second direction: Moving sideways

Stick with XOR games, but increase the number of players

XOR XOR

2 players 3 players 4 players

Involves multipartite entanglement, which is still poorly
understood

This is the direction we consider for the rest of this talk



Three-player XOR games
Tensor M : [n] x [n] x [n] — [~1,1] known to all players

i El[n] J El[n] k € [n]
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.l
x=4+1 y=+41 z=+1

Players win if sgn(l\/l,-jk)xyz =+1

Can be won with prob. 1/2 by flipping coins



The classical bias in three-player XOR games

The classical bias is given by

B(Gp) = max Z Mijk xiyjzi, such that x;, y;, z, € {—1,1}
ij.k



The entangled bias in three-player XOR games

The entangled bias is given by
B (G) = sup > My (v]X; @ Y; @ Z[o),
ij,k
such that |[¢) is a state and X, Y;, Z are

{—1,1}-valued observables



Unbounded bias ratio in 3-player XOR games

Thm. [Pérez-Garcia et al. 08] For any R > 1, there exists a 3-player
XOR game with bias ratio 3*/3 > R

Striking in light of Tsirelson’s bound for 2p XOR games.
There is no “tripartite” Grothendieck inequality in this sense

e Uses local Hilbert space dimension O(R?) for Alice (optimal),
but the dimensions for Bob and Charlie are unbounded

e The game is quite large: Alice gets O(R®) questions, but Bob
and Charlie up to exp(R)

e Highly non-explicit existence proof based on deep results from
operator space theory



Our main result

Thm. [B, Vidick| For any integer N = 2" there exists a three-player
XOR game Gy such that

B*(Gn) = Q(VN) B(G)

Moreover, the game G has N questions per player (close to
optimal)

There is an entangled strategy achieving this gap with
dimensions per player (optimal) and only “Pauli observables”



Proof sketch of the construction

The proof involves three steps:

1. Construct a 3p XOR game from any matrix with
appropriate size

2. Relate classical and entangled biases to spectral
properties of the matrix

3. Use the probabilistic method to prove existence of a
matrix with good spectral properties



Step 1: The Pauli-Fourier expansion

The n-qubit Pauli matrices {( ?), ( ) (? _()i), (% ,01)}®n

form a basis for the space of N-by-N matrices

. —1 '
?[| M v 2pMp| P
2" n-qubit Pauli

Pauli-Fourier coefficient



Step 1: The Pauli-Fourier expansion

The n-qubit Pauli matrices {( ?) ( ) (? _()i), (% ,01)}8',
form a basis for the space of N-by-N matrices
— 1
v M __BZPQRMPQR’D@Q@R
— -
N3 3n-qubit Pauli

Pauli-Fourier coefficient



Step 1: The game

Given a Hermitian matrix M of size 237, suitably normalized
pick n-qubit Paulis P, Q, R with prob. |Mpgr|

l

x ==l y = %1

Players win iff sgn(MpQR)xyz =+1

The game tensor is given by (MPQR)P7Q7R



Step 2: Upper bound on the classical bias

We have /\7/,DQR = <M, PR Q® R>

Plug this into the expression for the classical bias

B(Gm) = > Mpor xpyQzR
P.Q.R
= Z (M, P® Q® R) xpyqzr
P.Q.R
= </\/I7 (ZXPP>® ZyQQ ®<ZZRR)>
P Q R
X M z

The matrices X, Y, Z are Hermitian and have Frobenius norm
norm less than N3/2



Step 2: Upper bound on the classical bias

Define the 2-2-2 norm of M by

[M|l222 = max(M,X® Y ® Z)
s.t. X, Y, Z Hermitian, || X][[r, [ Y]F, [[Z]|F <1

The classical bias of the Pauli-Fourier game Gy, is thus
bounded by
B(Gm) < N2 M2



Step 2: Lower bound on the entangled bias

A lower bound on the entangled bias of G, can also be
obtained easily from the Pauli Fourier expansion of M

Since the Pauli matrices are observables, we have for any [¢))

B(Gm) > Y Mpor (¥|P® Q@ R)

P,Q.R

= (¥ Y MporP® Q@ Ry)

P.,Q.R

= N(¢|Mly)
This gives a lower bound in terms of the spectral norm

B*(Gu) = N3 M|



Step 2: Putting the spectral bounds together

Putting the bounds on the biases together gives for any
Hermitian N3-by-N3 matrix M,

B(Gu) - v ap M
56w =N Ml

Now, to find a good matrix M



Step 3: Finding a good matrix

We use the probabilistic method

Let [g) ~ A(0,1)"’ be a Gaussian vector and set
M {O ifi=i'Vj=jVk=K
(,"k)’(,-/ '/k/) = .
Y \g)&liji) (irjrkry  otherwise

Since M is “close” to the rank-1 matrix |g)(g], it is easy to
lower bound ||M||

Set [1)) = N=3/2|g). Then a x?-tail-bound gives that whp

IM|| > (| M]p) > CN?



Lem.

Step 3: Upper bounding the 2-2-2 norm

3 traceless Hermitian X, Y, Z in the Frobenius ball s.t.
[IMll222 = (glX® Y ®Z|g) -Tr(X® Y ® Z)
N— ——

0

By a standard decomposition, we may restrict to normalized
projectors (wrt Frobnenius norm) X', Y’ 7/, at a small loss:

[Mll2,22 S max(g|X' @ V' ® Z'|g) - Te(X' @ Y @ Z')

(Latata). For Gaussian vector |h) and matrix A,
(h|Alh) — Tr(A) is concentrated around 0

A delicate e-net argument over normalized projectors gives
that whp, [|[M[|2,22 < O(N)



Putting everything together

We have shown:

1. For any N3 x N3 matrix M, there is a 3-player XOR game Gy,

such that
5*(Gum)

_ M||
>N 3/2 H
B(Gm) — [M||2,2,2

2. There is a distribution over matrices M such that whp, both
Im]| > N and IM[l222 < O(N)

hold

3. Hence, there is a matrix M s.t. 3*(Gy) > ﬁ(m)ﬁ(GM)



Upper bounds on the maximum bias ratio



Upper bounds on the maximum bias ratio

Thm. [B, Vidick| For a three-player XOR game G with @ questions
per player,

B*(G) < KeQY?B(G)

Our lower bound gave a factor of ~ Q/*

Our gaps are nearly optimal (quadratically off) in terms of the
size of the game



Proof outline of the upper bound

The proof involves two steps:

1. Upper bound the ratio if Charlie is classical

2. Show that a quantum Charlie can be made classical at a
loss of 1/1/Q in the bias



Step 1: Suppose that Charlie is classical

Claim. In this case, the bias ratio is at most a constant

To each question k € [Q], Charlie answers with a classically
obtained bit z, € {—1,1}

After Charlie gets his question, Alice and Bob are left to play
a two-player XOR game:

to win, they have to answer bits x; and y; such that
Mijcxiyjzic = +1

Since they don't know Charlie's question, they must use the
same strategy for each k

But by Tsirelson/Grothendieck, entanglement gives Alice and
Bob at most a constant-factor advantage in the bias



Step 2: Making a quantum Charlie classical

Claim. A quantum Charlie gives at most a / Q-factor advantage over
a classical Charlie

For i.i.d. symmetric {—1,1}-valued random variables

z1,...,20, we have
Elziz] = d;
Let Cy,..., Cg be Charlie's observables. Then,
Q
E Z; Z ZjCj = C,'
j=1

On average over the z;s, the matrix z1C; + - -- + 2o Cg
squares to @ times the identity matrix

Cauchy-Schwarz gives an instantiation of the zs (a classical
strategy) that drop by bias by at most a factor /@



Open problems

Find an explicit matrix satisfying the spectral properties
proved possible by our probabilistic argument

Close the gap between upper and lower bounds on the number
of questions needed for a given bias ratio

Remove the log factor in our upper bound on ||M||222

Find out if unbounded ratios between the classical and
entangled biases are possible for 5* ~ 1/2



Thank you!
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