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Entanglement and nonlocal correlations

• [Bell64] Measurements on entangled quantum systems can
give outcomes that are correlated in a non-classical way

x ymeasurement settings

entangled
quantum systems

a bmeasurement outcomes



Qualitative picture of Bell’s Theorem

Pr[a, b|x , y ]

Classical (LHV)

Quantum



Nonlocal games

• [CHTW04] Use nonlocal games to quantitatively study
entanglement

x yrandomly selected questions

noncommunicating players

a banswers

• Given predicate f : (a, b, x , y) 7→ {WIN, LOSE} known to
both players

• compare the maximum winning probability with entanglement
to the maximum winning probability without entanglement



Main question

How much advantage can entanglement give in nonlocal games?

. . . in terms of

• the number of possible questions

• the number of possible answers

• the local Hilbert space dimension of the shared state

• the number of players?



General games

Projection games

Unique games

Binary games

XOR games

General games

Projection games

Unique games

Binary games

XOR games



XOR games

• A ∈ {−1, 1}n×n, probability distribution π : [n]× [n]→ [0, 1]

i ∈ [n] j ∈ [n]
random questions (i , j) ∼ π

x = ±1 y = ±1
answers

• The players win iff xy = Aij , equivalently iff Aijxy = +1.



Example: The CHSH Game

i j
Hij =

( 1 1
1 −1

)

x = ±1 y = ±1
answers

• Alice and Bob win iff Hijxy = +1

• Classically, Alice and Bob win with prob. at most 3/4

• but by sharing an EPR pair (|00〉+ |11〉)/
√

2, with prob. 0.85!



The bias

• Note that XOR games can always be won with prob. ≥ 1/2

• For random bits x , y , we have Pr[Aijxy = +1] = 1/2

10 1/2 Pr[win]

bias

• The bias equals 1/2 times

Pr[win]− Pr[lose] = Ei ,j

[
Aij xiyj

]
where xi , yj ∈ {−1, 1} are answers to questions i , j , resp.

• The advantage of entanglement is measured by the ratio of
the entangled and classical biases



The classical bias

• For XOR game G = (π,A) and Mij = π(i , j)Aij , the classical
bias is given by

β(G ) = max
∑
i ,j

Mij xiyj , such that xi , yj ∈ {−1, 1}



The entangled bias

• A {−1, 1}-valued observable is a Hermitian matrix with ±1
eigenvalues

• For XOR game G = (π,A) and Mij = π(i , j)Aij , the entangled
bias is given by

β∗(G ) = max
∑
i ,j

Mij 〈ψ|Xi ⊗ Yj |ψ〉,

such that |ψ〉 is a state and Xi ,Yj are

{−1, 1}-valued observables

Thm. (Tsirelson). The following identity holds true:

β∗(G ) = max
∑
i ,j

Mij 〈ui , vj〉, such that ‖ui‖2 = ‖vj‖2 = 1



Grothendieck’s inequality

Thm. (Grothendieck). There exists a universal constant KG such
that for any XOR game G , we have

β∗(G ) ≤ KG β(G )

• To this day, the exact value of KG is unknown

• Davie (1984) and Reeds (1991) proved KG & 1.68 . . .

• Braverman, Makarychev, Makarychev and Naor (2011)

KG <
2

π ln(1 +
√

2)
= 1.78 . . .

• To observe larger contrast between classical and entangled
systems, we need more general games than XOR games.

• There are two directions for generalization



First direction: Moving up

General

Projection

Unique

Binary

XOR

• [JPP+10, JP11] Upper
bounds on the advantage
in terms of the number of
questions, answers and
dimensions

• [BRSW11] Near-optimal
lower bounds

• Disadvantage: complex
measurements that may
be hard to implement
experimentally



Second direction: Moving sideways

• Stick with XOR games, but increase the number of players

XOR

2 players

XOR

3 players

· · ·
· · ·
· · ·
· · ·
· · ·

4 players

• Involves multipartite entanglement, which is still poorly
understood

• This is the direction we consider for the rest of this talk



Three-player XOR games

• Tensor M : [n]× [n]× [n]→ [−1, 1] known to all players

i ∈ [n] j ∈ [n] k ∈ [n]

x = ±1 y = ±1 z = ±1
• Players win if sgn

(
Mijk

)
xyz = +1

• Can be won with prob. 1/2 by flipping coins



The classical bias in three-player XOR games

• The classical bias is given by

β(GM) = max
∑
i ,j ,k

Mijk xiyjzk , such that xi , yj , zk ∈ {−1, 1}



The entangled bias in three-player XOR games

• The entangled bias is given by

β∗(G ) = sup
∑
i ,j ,k

Mijk 〈ψ|Xi ⊗ Yj ⊗ Zk |ψ〉,

such that |ψ〉 is a state and Xi ,Yj ,Zk are

{−1, 1}-valued observables



Unbounded bias ratio in 3-player XOR games

Thm. [Pérez-Garćıa et al. 08] For any R ≥ 1, there exists a 3-player
XOR game with bias ratio β∗/β ≥ R

• Striking in light of Tsirelson’s bound for 2p XOR games.
There is no “tripartite” Grothendieck inequality in this sense

• Uses local Hilbert space dimension O(R2) for Alice (optimal),
but the dimensions for Bob and Charlie are unbounded

• The game is quite large: Alice gets O(R8) questions, but Bob
and Charlie up to exp(R)

• Highly non-explicit existence proof based on deep results from
operator space theory



Our main result

Thm. [B, Vidick] For any integer N = 2n there exists a three-player
XOR game GN such that

β∗(GN) ≥ Ω̃(
√
N) β(GN)

• Moreover, the game GN has N2 questions per player (close to
optimal)

• There is an entangled strategy achieving this gap with N
dimensions per player (optimal) and only “Pauli observables”



Proof sketch of the construction

• The proof involves three steps:

1. Construct a 3p XOR game from any matrix with
appropriate size

2. Relate classical and entangled biases to spectral
properties of the matrix

3. Use the probabilistic method to prove existence of a
matrix with good spectral properties



Step 1: The Pauli-Fourier expansion

• The n-qubit Pauli matrices
{(

1 0
0 1

)
,
(
0 1
1 0

)
,
(
0 −i
i 0

)
,
(
1 0
0 −1

)}⊗n
form a basis for the space of N-by-N matrices

M

2n

2n = 1
N

∑
P M̂P

Pauli-Fourier coefficient

P

n-qubit Pauli



Step 1: The Pauli-Fourier expansion

• The n-qubit Pauli matrices
{(

1 0
0 1

)
,
(
0 1
1 0

)
,
(
0 −i
i 0

)
,
(
1 0
0 −1

)}⊗n
form a basis for the space of N-by-N matrices

M

N3

N3 = 1
N3

∑
P ,Q,R M̂PQR

Pauli-Fourier coefficient

P ⊗ Q ⊗ R

3n-qubit Pauli



Step 1: The game

• Given a Hermitian matrix M of size 23n, suitably normalized

• pick n-qubit Paulis P,Q,R with prob. |M̂PQR |

P Q R

x = ±1 y = ±1 z = ±1
• Players win iff sgn(M̂PQR)xyz = +1

• The game tensor is given by (M̂PQR)P,Q,R



Step 2: Upper bound on the classical bias

• We have M̂PQR = 〈M,P ⊗ Q ⊗ R〉

• Plug this into the expression for the classical bias

β(GM) =
∑

P,Q,R

M̂PQR xPyQzR

=
∑

P,Q,R

〈M,P ⊗ Q ⊗ R〉 xPyQzR

=

〈
M,

(∑
P

xpP

)
︸ ︷︷ ︸

X

⊗

∑
Q

yQQ


︸ ︷︷ ︸

Y

⊗

(∑
R

zRR

)
︸ ︷︷ ︸

Z

〉

• The matrices X ,Y ,Z are Hermitian and have Frobenius norm
norm less than N3/2



Step 2: Upper bound on the classical bias

• Define the 2-2-2 norm of M by

‖M‖2,2,2 = max〈M,X ⊗ Y ⊗ Z 〉
s.t. X ,Y ,Z Hermitian, ‖X‖F , ‖Y ‖F , ‖Z‖F ≤ 1

• The classical bias of the Pauli-Fourier game GM is thus
bounded by

β(GM) ≤ N9/2‖M‖2,2,2



Step 2: Lower bound on the entangled bias

• A lower bound on the entangled bias of GM can also be
obtained easily from the Pauli Fourier expansion of M

• Since the Pauli matrices are observables, we have for any |ψ〉

β∗(GM) ≥
∑

P,Q,R

M̂PQR 〈ψ|P ⊗ Q ⊗ R|ψ〉

= 〈ψ|
∑

P,Q,R

M̂PQRP ⊗ Q ⊗ R|ψ〉

= N3〈ψ|M|ψ〉

• This gives a lower bound in terms of the spectral norm

β∗(GM) ≥ N3‖M‖



Step 2: Putting the spectral bounds together

• Putting the bounds on the biases together gives for any
Hermitian N3-by-N3 matrix M,

β∗(GM)

β(GM)
≥ N−3/2

‖M‖
‖M‖2,2,2

• Now, to find a good matrix M



Step 3: Finding a good matrix

• We use the probabilistic method

• Let |g〉 ∼ N (0, 1)N
3

be a Gaussian vector and set

M(ijk),(i ′j ′k ′) =

{
0 if i = i ′ ∨ j = j ′ ∨ k = k ′

|g〉〈g |(ijk),(i ′j ′k ′) otherwise

• Since M is “close” to the rank-1 matrix |g〉〈g |, it is easy to
lower bound ‖M‖

• Set |ψ〉 = N−3/2|g〉. Then a χ2-tail-bound gives that whp

‖M‖ ≥ 〈ψ|M|ψ〉 ≥ CN3



Step 3: Upper bounding the 2-2-2 norm

• ∃ traceless Hermitian X ,Y ,Z in the Frobenius ball s.t.

‖M‖2,2,2 = 〈g |X ⊗ Y ⊗ Z |g〉 − Tr(X ⊗ Y ⊗ Z )︸ ︷︷ ︸
0

• By a standard decomposition, we may restrict to normalized
projectors (wrt Frobnenius norm) X ′,Y ′,Z ′, at a small loss:

‖M‖2,2,2 . max 〈g |X ′ ⊗ Y ′ ⊗ Z ′|g〉 − Tr(X ′ ⊗ Y ′ ⊗ Z ′)

Lem. (Lata la). For Gaussian vector |h〉 and matrix A,
〈h|A|h〉 − Tr(A) is concentrated around 0

• A delicate ε-net argument over normalized projectors gives
that whp, ‖M‖2,2,2 ≤ Õ(N)



Putting everything together

• We have shown:

1. For any N3 × N3 matrix M, there is a 3-player XOR game GM

such that
β∗(GM)

β(GM)
≥ N−3/2 ‖M‖

‖M‖2,2,2

2. There is a distribution over matrices M such that whp, both

‖M‖ ≥ CN3 and ‖M‖2,2,2 ≤ Õ(N)

hold

3. Hence, there is a matrix M s.t. β∗(GM) ≥ Ω̃(
√
N)β(GM)



Upper bounds on the maximum bias ratio



Upper bounds on the maximum bias ratio

Thm. [B, Vidick] For a three-player XOR game G with Q questions
per player,

β∗(G ) ≤ KGQ
1/2β(G )

• Our lower bound gave a factor of ≈ Q1/4

• Our gaps are nearly optimal (quadratically off) in terms of the
size of the game



Proof outline of the upper bound

• The proof involves two steps:

1. Upper bound the ratio if Charlie is classical

2. Show that a quantum Charlie can be made classical at a
loss of 1/

√
Q in the bias



Step 1: Suppose that Charlie is classical

Claim. In this case, the bias ratio is at most a constant

• To each question k ∈ [Q], Charlie answers with a classically
obtained bit zk ∈ {−1, 1}

• After Charlie gets his question, Alice and Bob are left to play
a two-player XOR game:

• to win, they have to answer bits xi and yj such that

Mijkxiyjzk = +1

• Since they don’t know Charlie’s question, they must use the
same strategy for each k

• But by Tsirelson/Grothendieck, entanglement gives Alice and
Bob at most a constant-factor advantage in the bias



Step 2: Making a quantum Charlie classical

Claim. A quantum Charlie gives at most a
√
Q-factor advantage over

a classical Charlie

• For i.i.d. symmetric {−1, 1}-valued random variables
z1, . . . , zQ , we have

E[zizj ] = δij

• Let C1, . . . ,CQ be Charlie’s observables. Then,

E zi

 Q∑
j=1

zjCj

 = Ci

• On average over the zi s, the matrix z1C1 + · · ·+ zQCQ

squares to Q times the identity matrix

• Cauchy-Schwarz gives an instantiation of the zi s (a classical
strategy) that drop by bias by at most a factor

√
Q



Open problems

• Find an explicit matrix satisfying the spectral properties
proved possible by our probabilistic argument

• Close the gap between upper and lower bounds on the number
of questions needed for a given bias ratio

• Remove the log factor in our upper bound on ‖M‖2,2,2

• Find out if unbounded ratios between the classical and
entangled biases are possible for β∗ ≈ 1/2



Thank you!
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