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Post-quantum cryptography

e Shor’s algorithms for Factoring and Discrete Logarithm break RSA public-key
cryptography, Diffie-Hellman, ElGamal, elliptic curve cryptography...

e Are there there cryptosystems we can carry out with classical computers, which
will remain secure even if and when quantum computers are built?

e Candidates:
o lattice-based cryptosystems, and the “Learning With Errors” problem
e key exchange based on elliptic curve isogenies (see Childs, Jao, Soukharev)
e the McEliece cryptosystem and its relatives

e We show that some McEliece / Neiderreiter cryptosystems are immune to the
natural analog of Shor’s algorithm.




—rror-correcting codes

e A generator matrix M, giving k linearly independent n-dimensional vectors.
E.g. the Hadamard code, with k=3 and n=8:

1 1 1 1
0O 0 1 1
0O 1 0 1

1
1

e We encode a k-bit message as an n-bit codeword, a linear combination of the
rows of M:

(0,1,1)-M=(1 1 0 0 1 1 0)
e Minimum distance between codewords is d=4. We can correct (d-1)/2 errors.

e Finding the closest codeword is NP-hard in general. But there are families of
codes where this can be done in polynomial time.




The McEliece cryptosystem

e Alice has the generator matrix M of an error-correcting code for which she can
correct errors efficiently, e.g. a Goppa code

e She chooses an invertible kxk matrix S and a permutation P privately, and
publishes a scrambled version of this code:

M’ ' =SMP

e

expresses the lattice of permutes the 7 bits of
codewords in a different basis the codeword

e Bob encodes a message according to M’ and adds some noise
e Alice applies P-1, decodes according to M, and applies S-1 to the message

e Niederreiter cryptosystem: use M and M’ as dual matrices instead




IS this secure?

e Assume that correcting errors in M’ is just as hard as for linear codes in general

e An attacker can break Alice’s cryptosystem once and for all by recovering the
private key from the public key

e Assume Alice’s original code M is publicly known
e Private key (S,P), public key M’

e Given two matrices M, M, find a matrix S and a permutation P such that

M’ '=SMP




Hidden symmetries

e We have seen this kind of problem before. Given two graphs Gi, G,

O

find a permutation s such that Go=m(G).

e A “hidden shift” problem: if fi(¢)= u(G1) and fo( )= u(Gz), then fo( u)=fi(u )

e Suppose we know Aut(Gi), the set of permutations x4 such that 0(G1)=Gi. Then if
we could find 7, we would know

Aut(Gy) =t Aut(Gy) !

e Thus Aut(Gz) is a conjugate of Aut(G:). Can we tell which one?




Groups and automorphisms for McEliece

o The group G =GLg XS, =1{S, P} acts on codes: (S,P)M=SMP.

o Alice’s code M has an automorphism group Aut(M)={(S,P)|SMP = M}.
To be generous, let’s assume it is known.

o Then Aut(M’)=(S, P)Aut(M)(S~',P~') is a conjugate of Aut(M).
e Can we tell which one it is, by querying the function f(S,P)=SM’'P?
e The level sets of fare the cosets of Aut(M’). That s,

f(S1, P)=f(S2, ) & (S'S2, P! B,) € Aut(M)

or equivalently, if f(S1, P1), f(S2, P) €(S’, P")Aut(M’) for some (S’,P’)




Hidden conjugates and coset states

o General framework: we have a fixed subgroup Hc G, and a function f hides a
conjugate subgroup Hé=gHg ! for some g.

e Here H=Aut(M), Hs=Aut(M’), G=GLxxS;, and g=(S,P).
e Goal: determine g by querying f.

e Start by creating a uniform superposition over G,

|x)
N

e Measuring f(x) collapses the state to a uniform superposition over a random
coset of the hidden subgroup Hs,




Fourier sampling

e Decompose the Hilbert space over G into irreducible representations: these are
homomorphisms p :G — U(d)

pxy)=px)ply) and phH=p)

e e.g. 3-dimensional representation of As, even permutations of five objects:




83asIs vectors

o In standard Fourier analysis, we change basis to vectors |k} corresponding to a
given frequency

e For nonabelian groups, each basis vector |p, i, j) corresponds to a matrix element
of some irreducible representation

e There are just enough of these, since for any finite group G,
2 __
Z d,o =1G|
peG
o For instance, if G=S; we have the

trivial representation (1), parity (+1),
and one two-dimensional irrep:




Measuring coset states doesn’t work

e “Weak sampling”: we measure the representation p. This probability
distribution is the same for all conjugates.

e “Strong sampling”: we measure the column j, in a basis of our choice. This
distribution depends on the conjugate. (The distribution on rows is uniform.)

e Any measurement on a coset state can be described this way—the coset state is
block diagonal, so measuring p doesn’t destroy any coherence.

e But we will show that for almost all conjugates, these measurements yield
exponentially little information. In fact...

e The distribution is exponentially close to that for the completely mixed state,
where H={1}.




A projection operator and a distribution on irreps

* In each irrep p and any subgroup H, we can define an operator
I[Ip=E p(h
H= = HP( )
e This is a projection operator of rank

e’ "’ normalized

. o character
* The probability we observe p under weak sampling is /

( )
l_I_Z Xo(h)

A e

e If normalized characters are small for & # 1, close to d f) /|G|, the Plancherel
distribution, same as for the completely mixed state




How much does strong sampling tell us®

e Suppose we observe an irrep p. Then in a given basis B={b},

(b|I1gs|b)
rk HH

P,(b)=

e Averaged over conjugates Hs, this is uniform, since

h kII
)(p( )]lzr H]l

Ellgs =EEp(h®)=E
g hgp()hdp d,

e In expectation over g, how far is Py from uniform? Total variation distance:

2 2
1 1
Zo-al) s (ro-3)

beB

d 2
g2 _ p
— dp IEVgrPg(b) = (rkHH) IIE;,Vgr(bIHHgIb)




Sounding the variance

e We have Var(b|llgs|b) <Var E (b|p(h®)|b)
8 g h#l

(& blo(®)ib))

E (blp(h®)Ib)|
< E (b@b"E(p®p")h¥)b@b")

<K
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g

e Decompose p ® p” into irreducibles:

)(T(h)

T

E(p®p")(h*)=E P &)= P

T<p®p TPRP*

\kﬂ(b”Ingb <: :E: (

TPRP*




Large and small representations

¢ We have

E Var(bl[ly1s|b) < Z (
PRP

<2 (8%

exponentially small if exponentially small
T is large (we hope) if T is small

e So, is this true when H=Aut(M), and when G=GLxxS,?




Code automorphisms

e Recall that Aut(M)=4{(S,P)|SMP=M}CGL; xS,

e Exercise: what are the automorphisms of the Hadamard code,

(0 0 1 1 1 1)
0 1 0 0 1 1
1 1 01 0 1

o If M has full rank, then for each P € S,, there is at most one S such that SMP=M

e We can focus on the subgroup K < S,, of permutations for which such an S exists




Product representations

e The irreps of a direct product G1x G are tensor products py®\ where p and A are
irreps of G1 and G2 respectively. Their normalized characters are

Yuer(a,b)| | xul@)|| x2(D)| | xa(b)
d e d, d; d)

e« We can bound normalized characters of (S,P) € Aut(M) € GLxxS, in terms of
thoseof Pe KC S,

e Happily, the representation theory of §, is very well understood, and we have
good bounds on characters




Supports and normalized characters in Sy

e The support supp(P) of a permutation P is the number of elements moved
< A‘l

e Eachirrep of is described by a Young diagram, 4
a partition n=A;+ A2+ with A, > A, >---

e Roichman: there are constants b >0, g <1 s.t.

n n

( ( A /vl))b-suPp(ﬂ) 7L/1
S max q)_r_

o If 41,17 <(1—c)n and supp(n)=Q(n),
normalized characters are exponential small

e Conversely, if A; or A, =(1—c¢)n, the dimension d, is vanishingly small
compared to d, chosen from the Plancherel distribution.




Automorphisms of Goppa codes

o The generator matrix of a Goppa code over Fg is of the form

([ g(z1)/h(z1) ... glzn)/M(zy) )
z18(z1)/h(z1) ... zn8(zn)/h(z,)

\2lg(z)/h(z1) .. 2 g(zn)/h(zn))

where g(z)/h(z) is a rational function and z,,...,z, are distinct

az+Db

e One type of action on the columns is a Mobius transformation, z — cztd
z

o The group of all such transformations is PGL,(F,) ; it is three-transitive on the
projective plane F, U{oo}. Any one that fixes three distinct z; is the identity.

o Stichtenoth’s Theorem states that all automorphisms of M are of this form.
Therefore, the support of any P # 1 is at least n-2.




Putting it all together

¢ Recall our bound on the variance:

x=(h)\ d?
< br
%Vgr(b|HH3|b>— Z (}El d - ) dp

T<PRpP*

N

exponentially small if exponentially small
T’s Young diagram is if T’s Young diagram
typical, since P has is too wide or tall
support at least n-2

e Summing over all T, the expected variance—and therefore the expected
information yielded by measuring the coset state—is exponentially small.

e By Markov’s inequality, almost all conjugates are indistinguishable.




A cautionary note

e We have not shown that other quantum algorithms, or even classical ones,
cannot break the McEliece cryptosystem.

e Nor have we shown that such an algorithm would violate a natural hardness
assumption (such as lattice-based cryptosystems and Learning With Errors).

e In fact, classical attacks exist on some Goppa codes, such as generalized Reed-
Solomon codes [Sidelnikov and Shestakov]

e However, we have shown that any algorithm that treats M as a “black box,” and
only probes its symmetries, requires new ideas.

e Our next goal: multiregister results a l1a Hallgren et al. for Graph Isomorphism,
and sieve results a la Moore, Russell, and Sniady.




YPEIMEIESH G- THE NATURE
of COMPUTATION

This book rocks! You somehow manage

to combine the fun of a popular book

with the intellectual heft of a textbook.
— Scott Aaronson

A treasure trove of information on
algorithms and complexity, presented in
the most delightful way.

— Vijay Vazirani

A creative, insightful, and accessible
introduction to the theory of computing,
written with a keen eye toward the
frontiers of the field and a vivid
enthusiasm for the subject matter.

— Jon Kleinberg
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