The McEliece Cryptosystem Resists Quantum Fourier Sampling Attack

Cristopher Moore
University of New Mexico
and the Santa Fe Institute

Joint work with
Hang Dinh, University of Connecticut / Indiana, South Bend
Alex Russell, University of Connecticut

Post-quantum cryptography

- Shor's algorithms for Factoring and Discrete Logarithm break RSA public-key cryptography, Diffie-Hellman, ElGamal, elliptic curve cryptography...
- Are there there cryptosystems we can carry out with classical computers, which will remain secure even if and when quantum computers are built?
- Candidates:
- lattice-based cryptosystems, and the "Learning With Errors" problem
- key exchange based on elliptic curve isogenies (see Childs, Jao, Soukharev)
- the McEliece cryptosystem and its relatives
- We show that some McEliece / Neiderreiter cryptosystems are immune to the natural analog of Shor's algorithm.

Error-correcting codes

- A generator matrix M, giving k linearly independent n-dimensional vectors. E.g. the Hadamard code, with $k=3$ and $n=8$:

$$
M=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

- We encode a k-bit message as an n-bit codeword, a linear combination of the rows of M :

$$
(0,1,1) \cdot M=\left(\begin{array}{lllllll}
1 & 1 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

- Minimum distance between codewords is $d=4$. We can correct ($d-1$)/2 errors.
- Finding the closest codeword is NP-hard in general. But there are families of codes where this can be done in polynomial time.

The McEliece cryptosystem

- Alice has the generator matrix M of an error-correcting code for which she can correct errors efficiently, e.g. a Goppa code
- She chooses an invertible $k \times k$ matrix S and a permutation P privately, and publishes a scrambled version of this code:

- Bob encodes a message according to M^{\prime} and adds some noise
- Alice applies P^{-1}, decodes according to M, and applies S^{-1} to the message
- Niederreiter cryptosystem: use M and M^{\prime} as dual matrices instead

Is this secure?

- Assume that correcting errors in M^{\prime} is just as hard as for linear codes in general
- An attacker can break Alice's cryptosystem once and for all by recovering the private key from the public key
- Assume Alice's original code M is publicly known
- Private key (S, P), public key M^{\prime}
- Given two matrices M, M, find a matrix S and a permutation P such that

$$
M^{\prime}=S M P
$$

Hidden symmetries

- We have seen this kind of problem before. Given two graphs G_{1}, G_{2},

find a permutation π such that $G_{2}=\pi\left(G_{1}\right)$.
- A "hidden shift" problem: if $f_{1}(\mu)=\mu\left(G_{1}\right)$ and $f_{2}(\mu)=\mu\left(G_{2}\right)$, then $f_{2}(\mu)=f_{1}(\mu \pi)$
- Suppose we know $\operatorname{Aut}\left(G_{1}\right)$, the set of permutations μ such that $\sigma\left(G_{1}\right)=G_{1}$. Then if we could find π, we would know

$$
\operatorname{Aut}\left(G_{2}\right)=\pi \operatorname{Aut}\left(G_{1}\right) \pi^{-1}
$$

- Thus $\operatorname{Aut}\left(G_{2}\right)$ is a conjugate of $\operatorname{Aut}\left(G_{1}\right)$. Can we tell which one?

Groups and automorphisms for McEliece

- The group $G=\mathrm{GL}_{k} \times S_{n}=\{S, P\}$ acts on codes: $(S, P) M=S M P$.
- Alice's code M has an automorphism group $\operatorname{Aut}(M)=\{(S, P) \mid S M P=M\}$. To be generous, let's assume it is known.
- Then $\operatorname{Aut}\left(M^{\prime}\right)=(S, P) \operatorname{Aut}(M)\left(S^{-1}, P^{-1}\right)$ is a conjugate of $\operatorname{Aut}(M)$.
- Can we tell which one it is, by querying the function $f(S, P)=S M^{\prime} P$?
- The level sets of f are the cosets of $\operatorname{Aut}\left(M^{\prime}\right)$. That is,

$$
f\left(S_{1}, P_{1}\right)=f\left(S_{2}, P_{2}\right) \Leftrightarrow\left(S_{1}^{-1} S_{2}, P_{1}^{-1} P_{2}\right) \in \operatorname{Aut}\left(M^{\prime}\right)
$$

or equivalently, if $f\left(S_{1}, P_{1}\right), f\left(S_{2}, P_{2}\right) \in\left(S^{\prime}, P^{\prime}\right) \operatorname{Aut}\left(M^{\prime}\right)$ for some $\left(S^{\prime}, P^{\prime}\right)$

Hidden conjugates and coset states

- General framework: we have a fixed subgroup $H \subset G$, and a function f hides a conjugate subgroup $H^{g}=g g^{-1}$ for some g.
- Here $H=\operatorname{Aut}(M), H^{g}=\operatorname{Aut}\left(M^{\prime}\right), G=\mathrm{GL}_{k} \times S_{n}$, and $g=(S, P)$.
- Goal: determine g by querying f.
- Start by creating a uniform superposition over $G, \frac{1}{\sqrt{|G|}} \sum_{x \in G}|x\rangle$
- Measuring $f(x)$ collapses the state to a uniform superposition over a random coset of the hidden subgroup H^{g},

$$
|c H\rangle=\frac{1}{\sqrt{|H|}} \sum_{h \in G}|c h\rangle
$$

Fourier sampling

- Decompose the Hilbert space over G into irreducible representations: these are homomorphisms $\rho: G \rightarrow \mathrm{U}(d)$

$$
\rho(x y)=\rho(x) \rho(y) \quad \text { and } \quad \rho\left(x^{-1}\right)=\rho(x)^{\dagger}
$$

- e.g. 3-dimensional representation of A_{5}, even permutations of five objects:

Basis vectors

- In standard Fourier analysis, we change basis to vectors $|k\rangle$ corresponding to a given frequency
- For nonabelian groups, each basis vector $|\rho, i, j\rangle$ corresponds to a matrix element of some irreducible representation
- There are just enough of these, since for any finite group G,

$$
\sum_{\rho \in \widehat{G}} d_{\rho}^{2}=|G|
$$

- For instance, if $G=S_{3}$ we have the trivial representation (1), parity (± 1), and one two-dimensional irrep:

$$
\begin{aligned}
\rho(1) & =\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
\rho(1 \leftrightarrow 2) & =\left(\begin{array}{ll}
1 & -1
\end{array}\right) \\
(2) & \rho(1 \rightarrow 2 \rightarrow 3 \rightarrow 1)
\end{aligned}=\left(\begin{array}{ll}
-1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & -1 / 2
\end{array}\right)
$$

Measuring coset states doesn't work

- "Weak sampling": we measure the representation ρ. This probability distribution is the same for all conjugates.
- "Strong sampling": we measure the column j, in a basis of our choice. This distribution depends on the conjugate. (The distribution on rows is uniform.)
- Any measurement on a coset state can be described this way-the coset state is block diagonal, so measuring ρ doesn't destroy any coherence.
- But we will show that for almost all conjugates, these measurements yield exponentially little information. In fact...
- The distribution is exponentially close to that for the completely mixed state, where $H=\{1\}$.

A projection operator and a distribution on irreps

- In each irrep ρ and any subgroup H, we can define an operator

$$
\Pi_{H}=\underset{h \in H}{\mathbb{E}} \rho(h)
$$

- This is a projection operator of rank

$$
\operatorname{rk} \Pi_{H}=\underset{h \in H}{\mathbb{E}} \chi_{\rho}(h)
$$

normalized
character

- The probability we observe ρ under weak sampling is

$$
\frac{d_{\rho}|H|}{|G|} \operatorname{rk}_{H}=\frac{d_{\rho}^{2}}{|G|}\left(1+\sum_{h \neq 1} \frac{\chi_{\rho}(h)}{d_{\rho}}\right)
$$

- If normalized characters are small for $h \neq 1$, close to $d_{\rho}^{2} /|G|$, the Plancherel distribution, same as for the completely mixed state

How much does strong sampling tell us?

- Suppose we observe an irrep ρ. Then in a given basis $B=\{b\}$,

$$
P_{g}(b)=\frac{\langle b| \Pi_{H^{g}}|b\rangle}{\operatorname{rk} \Pi_{H}}
$$

- Averaged over conjugates H^{g}, this is uniform, since

$$
\underset{g}{\mathbb{E}} \Pi_{H^{g}}=\underset{h}{\mathbb{E}} \underset{g}{\mathbb{E}} \rho\left(h^{g}\right)=\underset{h}{\mathbb{E}} \frac{\chi_{\rho}(h)}{d_{\rho}} \mathbb{1}=\frac{\operatorname{rk} \Pi_{H}}{d_{\rho}} \mathbb{1}
$$

- In expectation over g, how far is P_{g} from uniform? Total variation distance:

$$
\begin{aligned}
\left(\underset{g}{\mathbb{E}} \sum_{b \in B}\left|P_{g}(b)-\frac{1}{d_{\rho}}\right|\right)^{2} & \leq d_{\rho}^{2} \underset{b}{\mathbb{E}} \underset{g}{\mathbb{E}}\left(P_{g}(b)-\frac{1}{d_{\rho}}\right)^{2} \\
& =d_{\rho}^{2} \underset{b}{\mathbb{E}} \operatorname{Var}_{g} \\
P_{g} & (b)=\left(\frac{d_{\rho}}{\operatorname{rk} \Pi_{H}}\right)^{2} \underset{b}{\mathbb{E}} \operatorname{Var}_{g}\langle b| \Pi_{H^{g}}|b\rangle
\end{aligned}
$$

Bounding the variance

- We have

$$
\begin{aligned}
\underset{g}{\operatorname{Var}}\langle b| \Pi_{H^{g}}|b\rangle & \leq \underset{g}{\operatorname{Var}} \underset{h \neq 1}{\mathbb{E}}\langle b| \rho\left(h^{g}\right)|b\rangle \\
& \leq \underset{g}{\mathbb{E}}\left(\underset{h \neq 1}{\mathbb{E}}\langle b| \rho\left(h^{g}\right)|b\rangle\right)^{2} \\
& \left.\leq \underset{g}{\mathbb{E}} \underset{h \neq 1}{\mathbb{E}}\left|\langle b| \rho\left(h^{g}\right)\right| b\right\rangle\left.\right|^{2} \\
& \leq \underset{h \neq 1}{\mathbb{E}}\left\langle b \otimes b^{*}\right| \underset{g}{\mathbb{E}}\left(\rho \otimes \rho^{*}\right)\left(h^{g}\right)\left|b \otimes b^{*}\right\rangle
\end{aligned}
$$

- Decompose $\rho \otimes \rho^{*}$ into irreducibles:

$$
\underset{g}{\mathbb{E}}\left(\rho \otimes \rho^{*}\right)\left(h^{g}\right)=\underset{g}{\mathbb{E}} \bigoplus_{\tau \prec \rho \otimes \rho^{*}} \tau\left(h^{g}\right)=\bigoplus_{\tau \prec \rho \otimes \rho^{*}} \frac{\chi_{\tau}(h)}{d_{\tau}} \mathbb{1}
$$

- Then

$$
\underset{g}{\operatorname{Var}}\langle b| \Pi_{H^{g}}|b\rangle \leq \sum_{\tau \prec \rho \otimes \rho^{*}}\left(\underset{h \neq 1}{\mathbb{E}} \frac{\chi_{\tau}(h)}{d_{\tau}}\right)\left|\Pi_{\tau}\left(b \otimes b^{*}\right)\right|^{2}
$$

Large and small representations

- We have

$$
\begin{aligned}
\underset{b}{\mathbb{E}} \operatorname{Var}
\end{aligned}|b| \Pi_{H^{g}}|b\rangle \leq \sum_{\tau \prec \rho \otimes \rho^{*}}\left(\underset{h \neq 1}{\mathbb{E}} \frac{\chi_{\tau}(h)}{d_{\tau}}\right) \underset{b}{\mathbb{E}}\left|\Pi_{\tau}\left(b \otimes b^{*}\right)\right|^{2}, ~\left(\underset{\tau \prec \rho \otimes \rho^{*}}{\mathbb{E}} \frac{\chi_{\tau}(h)}{d_{\tau}}\right) \frac{d_{\tau}^{2}}{d_{\rho}}, ~ \begin{array}{ll}
\text { exponentially } \\
& \text { if T is small }
\end{array}
$$

- So, is this true when $H=\operatorname{Aut}(M)$, and when $G=\mathrm{GL}_{k} \times S_{n}$?

Code automorphisms

- Recall that $\operatorname{Aut}(M)=\{(S, P) \mid S M P=M\} \subseteq \mathrm{GL}_{k} \times S_{n}$
- Exercise: what are the automorphisms of the Hadamard code,

$$
M=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right) \text { ? }
$$

- If M has full rank, then for each $P \in S_{n}$ there is at most one S such that $S M P=M$
- We can focus on the subgroup $K \subseteq S_{n}$ of permutations for which such an S exists

Product representations

- The irreps of a direct product $G_{1} \times G_{2}$ are tensor products $\mu \otimes \lambda$ where μ and λ are irreps of G_{1} and G_{2} respectively. Their normalized characters are

$$
\left|\frac{\chi_{\mu \otimes \lambda}(a, b)}{d_{\mu \otimes \lambda}}\right|=\left|\frac{\chi_{\mu}(a)}{d_{\mu}}\right|\left|\frac{\chi_{\lambda}(b)}{d_{\lambda}}\right| \leq\left|\frac{\chi_{\lambda}(b)}{d_{\lambda}}\right|
$$

- We can bound normalized characters of $(S, P) \in \operatorname{Aut}(M) \subseteq \mathrm{GL}_{k} \times S_{n}$ in terms of those of $P \in K \subseteq S_{n}$
- Happily, the representation theory of S_{n} is very well understood, and we have good bounds on characters

Supports and normalized characters in S_{n}

- The support $\operatorname{supp}(P)$ of a permutation P is the number of elements moved
- Each irrep of is described by a Young diagram, a partition $n=\lambda_{1}+\lambda_{2}+\cdots$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots$
- Roichman: there are constants $b>0, q<1$ s.t.

$$
\left|\frac{\chi_{\lambda}(\pi)}{d_{\lambda}}\right| \leq\left(\max \left(q, \frac{\lambda_{1}}{n}, \frac{\lambda_{1}^{\prime}}{n}\right)\right)^{b \cdot \operatorname{supp}(\pi)}
$$

- If $\lambda_{1}, \lambda_{1}^{\prime}<(1-c) n$ and $\operatorname{supp}(\pi)=\Omega(n)$, normalized characters are exponential small

- Conversely, if λ_{1} or $\lambda_{2} \geq(1-c) n$, the dimension d_{λ} is vanishingly small compared to d_{ρ} chosen from the Plancherel distribution.

Automorphisms of Goppa codes

- The generator matrix of a Goppa code over \mathbb{F}_{q} is of the form

$$
M=\left(\begin{array}{ccc}
g\left(z_{1}\right) / h\left(z_{1}\right) & \ldots & g\left(z_{n}\right) / h\left(z_{n}\right) \\
z_{1} g\left(z_{1}\right) / h\left(z_{1}\right) & \ldots & z_{n} g\left(z_{n}\right) / h\left(z_{n}\right) \\
\vdots & \ddots & \vdots \\
z_{1}^{r} g\left(z_{1}\right) / h\left(z_{1}\right) & \ldots & z_{n}^{r} g\left(z_{n}\right) / h\left(z_{n}\right)
\end{array}\right)
$$

where $g(z) / h(z)$ is a rational function and z_{1}, \ldots, z_{n} are distinct

- One type of action on the columns is a Möbius transformation, $z \mapsto \frac{a z+b}{c z+d}$
- The group of all such transformations is $\operatorname{PGL}_{2}\left(\mathbb{F}_{q}\right)$; it is three-transitive on the projective plane $\mathbb{F}_{q} \cup\{\infty\}$. Any one that fixes three distinct z_{i} is the identity.
- Stichtenoth's Theorem states that all automorphisms of M are of this form. Therefore, the support of any $P \neq 1$ is at least $n-2$.

Putting it all together

- Recall our bound on the variance:

$$
\begin{aligned}
\underset{b}{\mathbb{E}} \operatorname{Var}
\end{aligned}|b| \Pi_{H^{g}}|b\rangle \leq \sum_{\tau \prec \rho \otimes \rho^{*}}\left(\underset{h \neq 1}{\mathbb{E}} \frac{\chi_{\tau}(h)}{d_{\tau}}\right) \frac{d_{\tau}^{2}}{d_{\rho}}, ~ \begin{array}{ll}
\text { exponentially small } \\
& \text { if T's Young diagram } \\
\text { exponentially small if } & \text { is too wide or tall }
\end{array}
$$

- Summing over all T , the expected variance-and therefore the expected information yielded by measuring the coset state-is exponentially small.
- By Markov's inequality, almost all conjugates are indistinguishable.

A cautionary note

- We have not shown that other quantum algorithms, or even classical ones, cannot break the McEliece cryptosystem.
- Nor have we shown that such an algorithm would violate a natural hardness assumption (such as lattice-based cryptosystems and Learning With Errors).
- In fact, classical attacks exist on some Goppa codes, such as generalized ReedSolomon codes [Sidelnikov and Shestakov]
- However, we have shown that any algorithm that treats M as a "black box," and only probes its symmetries, requires new ideas.
- Our next goal: multiregister results à la Hallgren et al. for Graph Isomorphism, and sieve results à la Moore, Russell, and Sniady.

Shameless Plug

This book rocks! You somehow manage to combine the fun of a popular book with the intellectual heft of a textbook.

- Scott Aaronson

A treasure trove of information on algorithms and complexity, presented in the most delightful way.
—Vijay Vazirani
A creative, insightful, and accessible introduction to the theory of computing, written with a keen eye toward the frontiers of the field and a vivid enthusiasm for the subject matter.

- Jon Kleinberg

Oxford University Press, 201I

THE NATURE of COMPUTATION

Cristopher Moore Stephan Mertens

Acknowledgements

