
The McEliece Cryptosystem
Resists Quantum Fourier Sampling Attack

Cristopher Moore
University of New Mexico
and the Santa Fe Institute

Joint work with
Hang Dinh, University of Connecticut / Indiana, South Bend
Alex Russell, University of Connecticut

Post-quantum cryptography

• Shor’s algorithms for Factoring and Discrete Logarithm break RSA public-key
cryptography, Di!e-Hellman, ElGamal, elliptic curve cryptography...

• Are there there cryptosystems we can carry out with classical computers, which
will remain secure even if and when quantum computers are built?

• Candidates:

• lattice-based cryptosystems, and the “Learning With Errors” problem

• key exchange based on elliptic curve isogenies (see Childs, Jao, Soukharev)

• the McEliece cryptosystem and its relatives

• We show that some McEliece / Neiderreiter cryptosystems are immune to the
natural analog of Shor’s algorithm.

Error-correcting codes

• A generator matrix M, giving k linearly independent n-dimensional vectors.
E.g. the Hadamard code, with k=3 and n=8:

• We encode a k-bit message as an n-bit codeword, a linear combination of the
rows of M:

• Minimum distance between codewords is d=4. We can correct (d-1)/2 errors.

• Finding the closest codeword is NP-hard in general. But there are families of
codes where this can be done in polynomial time.

M =




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1




(0, 1, 1) ·M =
�

1 1 0 0 1 1 0
�

The McEliece cryptosystem

• Alice has the generator matrix M of an error-correcting code for which she can
correct errors e!ciently, e.g. a Goppa code

• She chooses an invertible k×k matrix S and a permutation P privately, and
publishes a scrambled version of this code:

• Bob encodes a message according to M’ and adds some noise

• Alice applies P –1, decodes according to M, and applies S–1 to the message

• Niederreiter cryptosystem: use M and M’ as dual matrices instead

M � =SM P

expresses the lattice of
codewords in a di#erent basis

permutes the n bits of
the codeword

Is this secure?

• Assume that correcting errors in M’ is just as hard as for linear codes in general

• An attacker can break Alice’s cryptosystem once and for all by recovering the
private key from the public key

• Assume Alice’s original code M is publicly known

• Private key (S,P), public key M’

• Given two matrices M, M’, $nd a matrix S and a permutation P such that

M � =SM P

Hidden symmetries

• We have seen this kind of problem before. Given two graphs G1, G2,

$nd a permutation π such that G2=π(G1).

• A “hidden shift” problem: if f1(µ)= µ(G1) and f2(µ)= µ(G2), then f2(µ)=f1(µ π)

• Suppose we know Aut(G1), the set of permutations µ such that σ(G1)=G1. %en if
we could $nd π, we would know

• %us Aut(G2) is a conjugate of Aut(G1). Can we tell which one?

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

GRAPH ISOMORPHISM AND THE HIDDEN SUBGROUP PROBLEM 883

Figure 15.7: A pair of graphs G1 and G2. The automorphism group of the combined graph G1∪G2 depends
on whether or not G1 and G2 are isomorphic.

HIDDEN SUBGROUP

Input: A function f : G →S with the property that there is a subgroup H ⊆G such
that f (x) = f (x ′) if and only if x ′ = x h for some h ∈H

Output: The subgroup H

All of the exponential speedups in quantum algorithms we have seen so far work by solving cases of
HIDDEN SUBGROUP. Moreover, they do this with only a polynomial number of queries, even though groups
like !M or !n

2 are exponentially large.

Exercise 15.20 State Shor’s algorithm for DISCRETE LOG as a case of HIDDEN SUBGROUP. What is G , what is
f , and what is H?

How can we state GRAPH ISOMORPHISM in terms of symmetry? Let Sn denote the group of all n ! per-
mutations of n objects. If Γ is a graph with n vertices, then as in Section 11.1.2 its automorphism group
Aut(Γ) is the subgroup of Sn consisting of permutations of its vertices which leave it unchanged,

Aut(Γ) = {σ ∈Sn :σ(Γ) = Γ} .

Now suppose we place G1 and G2 side-by-side as in Figure 15.7. What is the automorphism group Aut(G1∪
G2) of the combined graph? If G1 &∼= G2, then the only symmetries are those which permute G1 and G2

separately, so
Aut(G1 ∪G2) = Aut(G1)×Aut(G2) .

On the other hand, if G1
∼= G2, then half the symmetries of G1 ∪G2 switch G1 and G2, so Aut(G1 ∪G2) is

twice as large as the subgroup Aut(G1)×Aut(G2). Thus

|Aut(G1 ∪G2)|
|Aut(G1)| |Aut(G2)|

=

!
1 if G1 &∼=G2

2 if G1
∼=G2 .

Thus if we can determine the automorphism group of a graph Γ, or even estimate its size, we can solve
GRAPH ISOMORPHISM. We can reduce this to HIDDEN SUBGROUP by defining a function f from Sn to the set
of all graphs with n vertices, where f (σ) is the result of permuting Γ withσ:

f (σ) =σ(Γ) .

Aut(G2) =πAut(G1)π−1

Groups and automorphisms for McEliece

• %e group acts on codes: (S,P)M=SMP.

• Alice’s code M has an automorphism group .
To be generous, let’s assume it is known.

• %en is a conjugate of Aut(M).

• Can we tell which one it is, by querying the function ?

• %e level sets of f are the cosets of Aut(M’). %at is,

or equivalently, if for some (S’,P’)

G =GLk ×Sn = {S, P}

Aut(M) = {(S, P) |SM P =M }

Aut(M �) = (S, P)Aut(M) (S−1, P−1)

f (S, P) =SM �P

f (S1, P1) = f (S2, P2)⇔ (S−1
1 S2, P−1

1 P2)∈Aut(M �)

f (S1, P1), f (S2, P2)∈ (S�, P �)Aut(M �)

Hidden conjugates and coset states

• General framework: we have a $xed subgroup H⊂G, and a function f hides a
conjugate subgroup Hg=gHg–1 for some g.

• Here H=Aut(M), Hg=Aut(M’), G=GLk×Sn, and g=(S,P).

• Goal: determine g by querying f.

• Start by creating a uniform superposition over G,

• Measuring f (x) collapses the state to a uniform superposition over a random
coset of the hidden subgroup Hg,

1�
|G |

�

x∈G
|x 〉

|c H〉= 1�
|H |

�

h∈G
|c h〉

Fourier sampling

• Decompose the Hilbert space over G into irreducible representations: these are
homomorphisms

• e.g. 3-dimensional representation of A5, even permutations of $ve objects:

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

886 QUANTUM COMPUTATION

Figure 15.9: A three-dimensional representation of A5, the group of even-parity permutations of 5 objects.
See if you can tell how to simultaneously switch two pairs of colors.

Sadly, all this machinery doesn’t give us what we want. While the general approach of generating
a coset state and measuring it in the Fourier basis does solve the HIDDEN SUBGROUP problem for some
families of nonabelian groups, it fails for Sn . The situation is even worse than that. It can be shown
that there is no measurement at all that we can do on the coset state (15.37) which will distinguish an
isomorphic pair of graphs from a non-isomorphic pair. Specifically, no matter what measurement we do,
the probability distribution of the outcomes we get in these two cases are exponentially close, so it would
take an exponential number of experiments to distinguish them.

Some hope yet remains. It is known that if we have many copies of the coset state—that is, the tensor
product of many |ψ〉s, where each one is a superposition over a randomly-chosen coset—then there is
a measurement which tells us whether the two graphs are isomorphic or not. However, this measure-
ment must be highly entangled. In other words, rather than an independent series of measurements on
the |ψ〉s, it is a complicated joint measurement along a basis where each basis vector corresponds to an
entangled state.

However, while we can write this measurement down mathematically, we do not know how, or if, it
can be carried out efficiently, i.e., by a quantum circuit with a polynomial number of gates. At the time
we write this, nearly every proposed family of algorithms has been proved to fail. Our current intuition
is that, if there is a quantum algorithm for GRAPH ISOMORPHISM, it doesn’t work by reducing to HIDDEN

SUBGROUP first.
15.20

and

ρ : G →U(d)

ρ(x y) =ρ(x)ρ(y) ρ(x−1) =ρ(x)†

Basis vectors

• In standard Fourier analysis, we change basis to vectors corresponding to a
given frequency

• For nonabelian groups, each basis vector corresponds to a matrix element
of some irreducible representation

• %ere are just enough of these, since for any $nite group G,

• For instance, if G=S3 we have the
trivial representation (1), parity (±1),
and one two-dimensional irrep:

�

ρ∈ �G
d 2
ρ = |G |

GRAPH ISOMORPHISM AND THE HIDDEN SUBGROUP PROBLEM 859

3

2

1 ρ(1) =
!

1
1

"

ρ(1↔ 2) =
!

1
−1

"

ρ(1→ 2→ 3→ 1) =
!
−1/2 −$3/2$

3/2 −1/2

"

FIGURE 15.8: The two-dimensional representation of S3. For the identity permutation, it gives the identity
matrix; for the permutation that swaps 1 and 2, it reflects around the x -axis; and for the cyclic permuta-
tion 1→ 2→ 3→ 1, it rotates the plane counterclockwise by 2π/3.

Both !n
2 and !M are abelian groups, in which the binary operation is commutative: x +y = y +x . For any

abelian group G , there are exactly |G | such homomorphisms from G to ", and they form an orthogonal
basis for the vector space of all superpositions over G . It is the homomorphic nature of these basis func-
tions that gives the Fourier transform all the properties that we know and love, such as the fact that the
Fourier transform of the convolution of two functions is the product of their Fourier transforms.

The permutation group Sn , on the other hand, is nonabelian—the order of multiplication matters. If
we swap 1↔ 2 and then 2↔ 3, we get the rotation 1 → 3 → 2, but if do these things in the opposite
order we get 1→ 2→ 3. Since multiplication in" is commutative, any homomorphism from Sn to"must
“forget” this kind of information.

Moreover, the vector space in which |ψ〉 lives, of superpositions of elements of Sn , has dimension
|Sn | = n !. So in order to define a Fourier transform, we need n ! different basis functions. But there are
only two homomorphisms from Sn to ": the trivial one which sends every element to 1, and the parity
that sends even and odd permutations to +1 and −1 respectively.

To define a Fourier basis for a nonabelian group G , we need to go beyond homomorphisms from G
to ", and instead look at homomorphisms from G to the group Ud of d -dimensional unitary matrices.
Such homomorphisms are called representations of G , and the Fourier basis functions we are used to in
the abelian case are just the special case where d = 1.

For example, suppose that G =S3. There are two one-dimensional representations, namely the trivial
one and the parity. But there is also a two-dimensional representation, which permutes the three corners
of a triangle by rotating and reflecting the plane as shown in Figure 15.8.

Representations like these give a geometric picture of the group in terms of rotations and reflections
in some—possibly high-dimensional—space. For another example, consider Figure 15.9. For every even
permutation σ of the 5 colors, there is a rotation that maps the 5 tetrahedra onto each other according
to σ. This gives a three-dimensional representation of A5, the subgroup of S5 consisting of permutations
with even parity.

While it would take us too far afield, there is a beautiful theory of Fourier transforms for nonabelian
groups, in which representations play the role of frequencies. Specifically, each basis vector |ρ, i , j 〉 cor-
responds to the i , j entry of some representation ρ. For instance, for S3 we have 3! = 6 basis vectors,
corresponding to the trivial representation, the parity, and the four matrix entries of the two-dimensional
representation. For many groups, including Sn , it is even possible to carry out the QFT efficiently, using
nonabelian versions of the FFT and “quantizing” them in ways analogous to Section 15.5.5.

|k 〉

|ρ, i , j 〉

Measuring coset states doesn’t work

• “Weak sampling”: we measure the representation ρ. %is probability
distribution is the same for all conjugates.

• “Strong sampling”: we measure the column j, in a basis of our choice. %is
distribution depends on the conjugate. (%e distribution on rows is uniform.)

• Any measurement on a coset state can be described this way—the coset state is
block diagonal, so measuring ρ doesn’t destroy any coherence.

• But we will show that for almost all conjugates, these measurements yield
exponentially little information. In fact...

• %e distribution is exponentially close to that for the completely mixed state,
where H={1}.

A projection operator and a distribution on irreps

• In each irrep ρ and any subgroup H, we can de$ne an operator

• %is is a projection operator of rank

• %e probability we observe ρ under weak sampling is

• If normalized characters are small for h ≠ 1, close to , the Plancherel
distribution, same as for the completely mixed state

normalized
character

dρ |H |
|G | rkΠH =

d 2
ρ

|G |


1+
�

h �=1

χρ(h)
dρ




rk ΠH = �
h∈H

χρ(h)

ΠH = �
h∈H

ρ(h)

d 2
ρ/|G |

How much does strong sampling tell us?

• Suppose we observe an irrep ρ. %en in a given basis B={b},

• Averaged over conjugates Hg, this is uniform, since

• In expectation over g, how far is Pg from uniform? Total variation distance:

Pg (b) =
〈b |ΠH g |b 〉

rk ΠH

�
g
ΠH g =�

h

�
g
ρ(h g) =�

h

χρ(h)
dρ

1=
rkΠH

dρ
1

�
�
g

�

b∈B

����Pg (b)−
1

dρ

����

�2
≤ d

2
ρ�

b

�
g

�
Pg (b)−

1
dρ

�2

= d
2
ρ�

b

Var
g

Pg (b) =
�

dρ

rkΠH

�2
�
b

Var
g

〈b |ΠH g |b 〉

Bounding the variance

• We have

• Decompose into irreducibles:

• %en

ρ⊗ρ∗

�
g
(ρ⊗ρ∗)(h g) =�

g

�

τ≺ρ⊗ρ∗
τ(h g) =
�

τ≺ρ⊗ρ∗

χτ(h)
dτ

1

Var
g

〈b |ΠH g |b 〉 ≤Var
g

�
h �=1
〈b |ρ(h g)|b 〉

≤�
g

�
�

h �=1
〈b |ρ(h g)|b 〉
�2

≤�
g
�

h �=1

��〈b |ρ(h g)|b 〉
��2

≤ �
h �=1
〈b ⊗b

∗|�
g
(ρ⊗ρ∗)(h g) |b ⊗b

∗〉

Var
g

〈b |ΠH g |b 〉 ≤
�

τ≺ρ⊗ρ∗

�
�

h �=1

χτ(h)
dτ

���Πτ(b ⊗b
∗)
��2

Large and small representations

• We have

• So, is this true when H=Aut(M), and when G=GLk×Sn?

�
b

Var
g

〈b |ΠH g |b 〉 ≤
�

τ≺ρ⊗ρ∗

�
�

h �=1

χτ(h)
dτ

�
�
b

��Πτ(b ⊗b
∗)
��2

≤
�

τ≺ρ⊗ρ∗

�
�

h �=1

χτ(h)
dτ

�
d 2
τ

dρ

exponentially small if
τ is large (we hope)

exponentially small
if τ is small

Code automorphisms

• Recall that

• Exercise: what are the automorphisms of the Hadamard code,

• If M has full rank, then for each P ∈ Sn there is at most one S such that SMP=M

• We can focus on the subgroup K ⊆ Sn of permutations for which such an S exists

Aut(M) = {(S, P) |SM P =M }⊆GLk ×Sn

M =




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


 ?

Product representations

• %e irreps of a direct product G1×G2 are tensor products μ⊗λ where μ and λ are
irreps of G1 and G2 respectively. %eir normalized characters are

• We can bound normalized characters of (S,P) ∈ Aut(M) ⊆ GLk×Sn in terms of
those of P ∈ K ⊆ Sn

• Happily, the representation theory of Sn is very well understood, and we have
good bounds on characters

����
χµ⊗λ(a ,b)

dµ⊗λ

����=
����
χµ(a)

dµ

����
����
χλ(b)

dλ

����≤
����
χλ(b)

dλ

����

Supports and normalized characters in Sn

• %e support supp(P) of a permutation P is the number of elements moved

• Each irrep of is described by a Young diagram,
a partition with

• Roichman: there are constants b > 0, q < 1 s.t.

• If and ,
normalized characters are exponential small

• Conversely, if , the dimension is vanishingly small
compared to chosen from the Plancherel distribution.

n =λ1+λ2+ · · · λ1 ≥λ2 ≥ · · ·

λ1

λ�1
����
χλ(π)

dλ

����≤
�

max
�

q ,
λ1

n
,
λ�1
n

��b ·supp(π)

λ1,λ�1 < (1− c)n supp(π) =Ω(n)

λ1 or λ2 ≥ (1− c)n dλ
dρ

Automorphisms of Goppa codes

• %e generator matrix of a Goppa code over is of the form

where g(z)/h(z) is a rational function and are distinct

• One type of action on the columns is a Möbius transformation,

• %e group of all such transformations is ; it is three-transitive on the
projective plane . Any one that $xes three distinct is the identity.

• Stichtenoth’s "eorem states that all automorphisms of M are of this form.
%erefore, the support of any P ≠ 1 is at least n–2.

�q

PGL2(�q)
�q ∪ {∞}

M =




g (z 1)/h(z 1) . . . g (z n)/h(z n)
z 1 g (z 1)/h(z 1) . . . z n g (z n)/h(z n)

...
...

...
z r

1 g (z 1)/h(z 1) . . . z r
n g (z n)/h(z n)




z 1, . . . , z n

z �→ a z +b
c z +d

z i

Putting it all together

• Recall our bound on the variance:

• Summing over all τ, the expected variance—and therefore the expected
information yielded by measuring the coset state—is exponentially small.

• By Markov’s inequality, almost all conjugates are indistinguishable.

�
b

Var
g

〈b |ΠH g |b 〉 ≤
�

τ≺ρ⊗ρ∗

�
�

h �=1

χτ(h)
dτ

�
d 2
τ

dρ

exponentially small if
τ’s Young diagram is
typical, since P has
support at least n–2

exponentially small
if τ’s Young diagram
is too wide or tall

A cautionary note

• We have not shown that other quantum algorithms, or even classical ones,
cannot break the McEliece cryptosystem.

• Nor have we shown that such an algorithm would violate a natural hardness
assumption (such as lattice-based cryptosystems and Learning With Errors).

• In fact, classical attacks exist on some Goppa codes, such as generalized Reed-
Solomon codes [Sidelnikov and Shestakov]

• However, we have shown that any algorithm that treats M as a “black box,” and
only probes its symmetries, requires new ideas.

• Our next goal: multiregister results à la Hallgren et al. for Graph Isomorphism,
and sieve results à la Moore, Russell, and Sniady.

Shameless Plug THE NATURE
of COMPUTATION

Cristopher Moore
Stephan Mertens

Oxford University Press,
2011

This book rocks! You somehow manage
to combine the fun of a popular book
with the intellectual heft of a textbook.

— Scott Aaronson

A treasure trove of information on
algorithms and complexity, presented in
the most delightful way.

— Vijay Vazirani

A creative, insightful, and accessible
introduction to the!theory of computing,
written with a keen eye toward the
frontiers!of the field and a vivid
enthusiasm for the subject matter.

— Jon Kleinberg

Acknowledgements

