Waterloo Institute for Nanotechnology
Mike & Ophelia Lazaridis Quantum-Nano Centre, QNC 3606
University of Waterloo
200 University Avenue West,
Waterloo, ON N2L 3G1
519-888-4567, ext. 38654
win-office@uwaterloo.ca
Research interests: multiscale modeling of process systems; density function theory studies of industrial catalyst systems; new nanomaterials
Professor Luis Ricardez-Sandoval’s expertise is in the fields of deterministic and stochastic modeling, control systems theory, process design and optimization of dynamic systems under uncertainty and multiscale modeling of process systems. Ricardez-Sandoval has developed efficient and practical tools that have been applied for optimal process design under uncertainty. Ricardez-Sandoval has also conducted Density Function Theory (DFT) studies that have provided insight on industrially-relevant catalytic systems and enabled the development of new nano-materials for their application as supercapacitor materials.
Ricardez-Sandoval received his B. Sc. degree from the Instituto Tecnologico de Orizaba in Orizaba, Mexico. He obtained his M. Sc. degree from the Instituto Tecnologico de Celaya in Celaya, Mexico. He received his Ph.D. degree from the University of Waterloo in Waterloo, Canada. Prior to joining the graduate program at UW, Ricardez-Sandoval worked in the manufacturing and Oil & Gas industry for several years. Ricardez-Sandoval has received the Chemical Engineering Undergraduate student award for being the best student in his class and the J.M Smith award for being the best student in the Master in science program. Ricardez-Sandoval’s current research interests include: multiscale modelling and control of chemical processes, optimal design and control of dynamic systems under uncertainty and dynamic modelling and control of industrially-relevant processes.
My current research interests in nanotechnology are primarily focused on the development of multiscale models for manufacturing processes and industrially-relevant catalytic processes, e.g., thin film deposition, methane cracking for hydrogen production, new nano-materials for portable electronic devices. Multiscale models are becoming the preferred tool to study the behaviour of systems where the phenomenological events occurring at the microscopic and molecular scales are key to product quality.
Part of my research is centered on the development of mathematical tools and efficient algorithms that enable the development of uncertainty analyses for general multiscale modelling processes. The key idea in this research is to develop probabilistic-based methodologies that enable an accurate (non-conservative) description of the key properties of a multiscale system in the presence of uncertainty in the model parameters. Similarly, multiscale modelling approaches are used in my group to assist in the design of new nano-materials with high energy storage capabilities. This research is of high importance for the electronic devices manufacturing sector since it can identify the next generation of supercapacitor materials. Furthermore, my research also includes the development of hierarchical multiscale models to study of industrially-relevant catalytic processes. These models are usually developed using a bottom-to-top approach and include various modelling techniques such as Finite Element Analysis (FEA), Monte Carlo (MC) simulations, Molecular Dynamics (MD) and Density Functional Theory (DFT) analysis.
Office: E6 3014
Phone: 519-888-4567, ext.38667
Email: laricardezsandoval@uwaterloo.ca
Website: Luis Ricardez-Sandoval
Waterloo Institute for Nanotechnology
Mike & Ophelia Lazaridis Quantum-Nano Centre, QNC 3606
University of Waterloo
200 University Avenue West,
Waterloo, ON N2L 3G1
519-888-4567, ext. 38654
win-office@uwaterloo.ca
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is co-ordinated within our Office of Indigenous Relations.