Use of Pyrene Excimer Fluorescence to Probe Polymer Chain Diffusion between Latex Particles during Film Formation

Remi Casier

Profs. Jean Duhamel and Mario Gauthier
University of Waterloo, Waterloo, Ontario
Introduction

Latex:

- Stable dispersion of polymer particles in an aqueous solution

Applications:

- Products such as gloves and balloons
- Additive to glues and paper coatings
- Paints and coatings
Film Formation from a Latex Dispersion

Stage 1:
Water Evaporation

Stage 2:
Particle Deformation

Stage 3:
Coalescence

- Interparticle polymer diffusion (IPD) during coalescence of the latex particles produces a homogeneous film.

- The minimum film formation temperature (MFT) must be reached before polymer chains can interdiffuse ($\text{MFT} \approx T_g$)\(^1\)

Background

- Previous studies of latex film formation by Winnik1-2 have primarily used fluorescence resonance energy transfer (FRET) to probe IPD

- Two dyes used: Phenanthrene as a donor and anthracene as an acceptor

- Time resolved fluorescence decays are obtained for various annealing times

\[I_D(t) = B_1 \exp \left[-\frac{t}{\tau_D} - P \left(\frac{t}{\tau_D} \right)^{\frac{1}{2}} \right] + B_2 \exp \left(-\frac{t}{\tau_D} \right) \]

Proposal

- Develop a simpler method to probe the minimum film formation temperature (MFT) and the degree of interparticle polymer diffusion (IPD) in latex films

- Use a fluorescently-labelled latex with an emission that changes depending on the degree of IPD

- A single fluorophore pyrene (Py) can be used, thus only a single fluorescently-labelled latex must be prepared
Pyrene Excimer Fluorescence

hv + Py + Py → Py* + Py → (Py Py)*

Monomer Emission

Excimer Emission

I_E/I_M – a measure of the amount of excimer formed
Interparticle Polymer Diffusion

At $t=0$:
- High C_{Py}
- Lots of excimer formation
- High I_E/I_M ratio

At $t>0$:
- Low C_{Py}
- Minimal excimer formation
- Low I_E/I_M ratio
Pyrene Labeled Monomer (PyLM)

- Water solubility can be tuned by varying the length of the oligo(ethylene glycol) unit
- Copolymerized with \(n \)-butyl methacrylate to yield a pyrene labeled poly(butyl methacrylate) latex (Py-PBMA Latex)

1-pyrenylmethoxy-2-ethoxy-2-ethoxy-2-ethoxy methacrylate (Py-\(\text{EG}_3 \)-MA)
1-Pyrenylmethoxy-2-Ethoxy-2-Ethoxy-2-Ethanol

\[\text{Br} + \text{AgO}_2 \text{, 2 eq.} \quad \text{CH}_2\text{Cl}_2 \quad \text{1 eq.} \]

1.05 eq.
2-(1-Pyrenylmethyloxy)ethyl Methacrylate (Py-EG-MA)

1 eq. + 1.5 eq. \[\text{DMAP} \quad \text{CH}_2\text{Cl}_2\] \[\rightarrow\]

Py

9.0 1.0 1.0 2.0 2.0 10.0 2.7
Low solids content (2 g \(n\)-butyl methacrylate in 66 mL H\(_2\)O)

Surfactant: 50 mg dioctyl sodium sulfosuccinate (AOT) (0.8 mol\%, based on monomer)
- Less surfactant used led to unstable particles, and the formation of coagulum (up to 40 wt\% of the monomer used)
- More surfactant led to very small particles

Initiator: 5 mg ammonium persulfate (APS) (0.15 mol\%, based on monomer)

Conditions: 80 °C for 3 hours, stirred at 550 RPM

90 – 100 nm particle size, \(d_1/d_2 < 1.05\)

<table>
<thead>
<tr>
<th>Reaction Volume (mL)</th>
<th>Particle Diameter (nm)</th>
<th>(d_1/d_2)</th>
<th>(M_n) (kg/mol)</th>
<th>(\bar{D})</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>95</td>
<td>1.04</td>
<td>510</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Emulsion Containing Py-EG$_3$-MA

- **Initial Charge**
 - 63 mL deionized water with 58 mg AOT and 5 mg APS

- **Monomer Feed**
 - 2.1 g BMA, 0.3 g Py-EG$_3$-MA (5 mol%) and 20 mg AOT was emulsified with 1 mL deionized water

- Monomer was fed in over 3 hours at 80 °C with a stirring rate of 550 rpm

- Reaction was stopped immediately after to help prevent the formation of low molecular weight pyrene containing species

- Particle size of 118 nm with a d$_1$/d$_2$ of 1.04

- Pyrene labelling level of 1.9 mol%
Py-PBMA Latex GPC Trace

![Graph showing DRI and Abs. (a.u.) vs. Retention Volume (mL)]

Retention Volume (mL)
Removal of Unbound Pyrene

- Only polymer-bound pyrene can be used to probe interparticle polymer diffusion during film formation

- If any free pyrene remains, the diffusion of the small pyrene-containing molecules will be measured

- Dialysis (50 kg/mol MWCO) was used to remove low molecular weight species while maintaining a stable emulsion

- A mixture of 20 vol% ethanol in water containing 2.5 mM AOT was used to accelerate the removal of the hydrophobic PyLM
Dialysis of the Py-PBMA Latex

- The pyrene content of the dialysate was measured by steady-state fluorescence
- Particle size remained unchanged after dialysis
After Dialysis

\[\text{M}_n: 430 \text{ kg/mol} \quad \mathcal{D}: 1.9 \]
A film was prepared from a mixture of 5 wt% Py-PBMA-latex in 95 wt% PBMA-latex

<table>
<thead>
<tr>
<th>Latex Sample</th>
<th>Py Content (mol%)</th>
<th>Particle Diameter (nm)</th>
<th>d₁/d₂</th>
<th>Mₙ (kg/mol)</th>
<th>Đ</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBMA</td>
<td>0</td>
<td>95</td>
<td>1.04</td>
<td>510</td>
<td>2.0</td>
</tr>
<tr>
<td>Py-PBMA</td>
<td>1.9</td>
<td>118</td>
<td>1.04</td>
<td>430</td>
<td>1.9</td>
</tr>
</tbody>
</table>

After the film had dried for 3 hours under nitrogen:
1. Annealed in a glass tube submerged in an oil bath
2. Rapidly cooled to room temperature with an aluminum block
3. Analysed by steady-state fluorescence
Steady-State Fluorescence

$T_{an} = 82 \, ^\circ C$

<table>
<thead>
<tr>
<th>Annealing Time (min.)</th>
<th>I_E/I_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.22</td>
</tr>
<tr>
<td>7</td>
<td>0.19</td>
</tr>
<tr>
<td>30</td>
<td>0.17</td>
</tr>
<tr>
<td>120</td>
<td>0.16</td>
</tr>
<tr>
<td>t_{∞}</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Increasing Annealing Time.
Fraction of Mixing

\[f_m(t) = \frac{(\frac{I_E}{I_M})_{(t)} - (\frac{I_E}{I_M})_{(t=0)}}{(\frac{I_E}{I_M})_{(t=\infty)} - (\frac{I_E}{I_M})_{(t=0)}} \]

Annealing Time (min.)

Py

Py

Py

Py

149 °C

114 °C

82 °C

Annealing Time (min.)
Polymer Chain Diffusion Coefficient (D)

- Concentration profile of molecules diffusing out of a spherical particle of radius R using Fick’s law:

$$C_{Py}(r, t, D) = \frac{C_0}{2} \left[\text{erf} \left(\frac{R + r}{\sqrt{2Dt}} \right) + \text{erf} \left(\frac{R - r}{\sqrt{2Dt}} \right) \right] - \frac{C_0}{r} \left(\frac{Dt}{\pi} \right)^{1/2} \left[\exp \left(\frac{(R - r)^2}{4Dt} \right) - \exp \left(- \frac{(R + r)^2}{4Dt} \right) \right]$$

Calculated f_m:

$$f_m^{calc}(t) = \frac{M_t}{M_\infty}$$

Where M_t is the mass that has diffused across the particle interface at time t.

$$M_t = M_\infty - \int_0^R C_{Py}(r, t, D) \cdot 4\pi r^2 dr$$

$$M_\infty = \frac{4}{3} \pi R^3 C_0$$

$$f_m^{calc}(t) = 1 - \frac{\int_0^R C_{Py}(r, t, D) \cdot 4\pi r^2 dr}{\frac{4}{3} \pi R^3 C_0}$$

By setting f_m^{calc} equal to the experimental f_m and numerically integrating C_{Py}, the diffusion coefficient D can be found.

$$f_m(t) = \frac{\left(\frac{I_E}{I_M}\right)_t - \left(\frac{I_E}{I_M}\right)_{t=0}}{\left(\frac{I_E}{I_M}\right)_{t=\infty} - \left(\frac{I_E}{I_M}\right)_{t=0}}$$
Diffusion Coefficients

![Graph showing diffusion coefficients at different temperatures.]

- **D (nm\(^2\).s\(^{-1}\))**
- **f\(_m\) (a.u.)**
- Temperatures: 82 °C, 114 °C, 149 °C
Summary

Determine the degree of interparticle polymer diffusion

- Using a single fluorescently-labelled latex
- Quantitatively analysed by steady-state fluorescence

Current areas of improvement:
- low pyrene labeling levels
- the removal of unbound pyrene
Acknowledgements

Supervisors:
Prof. Jean Duhamel
Prof. Mario Gauthier

All members of the Duhamel and Gauthier groups.