Carbon nanotubes and graphene nanoplatelets for multi-functional composites

Dr. Aiping Yu
Department of Chemical Engineering
1. Brief introduction to carbon nanotubes (CNTs) and graphene nanoplatelet

2. Single walled carbon nanotubes (SWNTs)- Nylon 6 composite fiber

3. Graphene-epoxy composite

4. CNTs/carbon fiber 3D matrix composite

5. Work @ Sabic Innovative Plastics

6. Work @ UW
Carbon nanotube & graphene nanoplatelet

- High mechanical strength and tensile modulus (Young’s modulus ~1TPa, carbon fiber: 400-600 MPa)
- Unique electrical properties (~1*10^5 S/cm)
- Exceptional thermal conductivity (~3000 W/mK)
- Low density (~1.3-2g/ml) high aspect ratio (L/D~1000)
Synthesis of carbon nanotubes

Chemical vapor deposition

Arc-discharge
Applying SWNTs & GNPs to polymers

High mechanical properties
Antistatic
EMI shielding
Against lighting strike

Nano-materials will bring revolution to industry
Brief example—strongest polymer composite ever made

Tensile strength matches spider silk and modulus (80 GPa) is much higher than spider silk

R. Baughman, 290,1310, Science, 2000
Nylon 6/SWNT Advanced Composites --- mechanical/electrical enhancement

Yu, A. et al., J. of American Chemical Society 2005, 127
Motivation and challenges

- Nylon is a widely used thermoplastics owing to its good strength high elongation, excellent abrasion resistance, etc.
- There is need to improve the mechanical strength, toughness and electrical conductivity.

- Lack of functionality resulting chemical incompatibility with the polymer matrix and the self-aggregation of SWNTs into bundles due to van der Waals attraction.
- Homogeneous dispersion & SWNTs not pull out from polymer
Ensure efficient load transfer from the matrix to the fiber, the **interfacial bonding** between the polymer matrix and the carbon nanotubes is necessary to prevent fiber pull out.

Controlled HNO$_3$ treatment of SWNTs, brings –COOH to the end of SWNT

In-situ grafting PA6 chain to SWNT surface
Step one: HNO₃ treatment

1. SWNT surface hydrophilic

2. Removed catalyst particles

Atomic Force Microscopy
Step 2: In-situ grafting nylon 6 to SWNT

\[\text{NH}_2(CH_2)_5COOH \]

initiator
6-aminocaproic acid

\[\text{ON} \]

\[\text{H}_2N(CH_2)_5COO^- + \text{H}_2\text{N}(CH_2)_5COO^- \]

sonication, 80 °C

Advantages:
No solvent
PA6 grafted to SWNT
Characterization of SWNTs with grafted Nylon 6

AFM of SWNT

IR spectra samples prepared using different initiator concentrations

1640 cm\(^{-1}\)→C=O group of the amide functionality
1540 cm\(^{-1}\) combination of N-H bond C-N bond of the amide group
In situ polymerization setup & fiber preparation

- Lab reactor
- Fiber spinneret
- Cross-section

Composite fibers
Characterization of SWNTs-Nylon 6 composite

SEM

TEM

Differential thermal analysis.

Thermal decomposition T.

Differential thermal analysis (DTA) and differential thermal gravimetric analysis (DTG) graphs for different wt% of SWNT in Nylon 6. The graphs show the temperature range from 150 to 300 °C for DTA and 420 to 460 °C for DTG, with various wt% of SWNT in Nylon 6 marked on the graphs.
Results of electrical conductivity

<table>
<thead>
<tr>
<th>Samples @ 1wt % loading</th>
<th>Electrical conductivity (S/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA6 grafted SWNT composite</td>
<td>1.1E-6</td>
</tr>
</tbody>
</table>

Electrical conductivity data show:
The composites are in the anti-static range
1 wt % SWNT loading
The PA6 grafted leads to 84% increased tensile strength and 170% Young’s modulus (1.5 wt% loading)
Modeling calculation of SWNTs-Nylon 6 composite

Halpin–Tsai model

Is widely used to predict the modulus of unidirectional or randomly distributed filler-reinforced composites

\[
E_c = \left[\frac{3 + 2 \left(\frac{l_{NT}}{d_{NT}} \right) \eta_L V_{NT}}{8 \left(1 - \eta_L V_{NT} \right)} \right] \left[\frac{5 + 2 \eta_L V_{NT}}{8 \left(1 - 2 \eta_L V_{NT} \right)} \right] E_m
\]

\[
\eta_L = \frac{\left(\frac{E_{NT}}{E_m} \right) - 1}{\left(\frac{E_{NT}}{E_m} \right) + 2 \left(\frac{l_{NT}}{d_{NT}} \right)}
\]

\[
\eta_L = \frac{\left(\frac{E_{NT}}{E_m} \right) - 1}{\left(\frac{E_{NT}}{E_m} \right) + 2}
\]
Summary

- The PA6 chains are found to be grafted to the SWNTs by a condensation reaction between the –COOH groups of the SWNTs and the terminal amino group of PA6.

- The grafted PA6 chains enhance the SWNT-nylon6 interfacial interaction and improve their compatibility, leading to a homogeneous dispersion of the SWNTs in the nylon matrix.

- The Young’s modulus, tensile strength, and thermal stability of nylon 6 fibers are greatly improved by the incorporation of SWNTs via the process.

- The composite is also anti-static in the pursued concentration range.
Graphene/ Epoxy Resin Composites
--- Thermal Interface Materials

With continued scaling of devices, heat-transport problems will most likely be aggravated at all levels.
GNPs as fillers in epoxy matrix for TIMs

Requirements of TIMs:
Thermal conductivity $\geq 2 \text{ W/mK}$
Low thermal expansion

Thermal conductivity of polymer matrix: 0.2-0.4 W/mK

Conventional Particles:
SiO_2, AlN, Ag

Disadvantages:
Low aspect ratio
High loading

Advantages of GNPs
• High thermal conductivity
• High aspect ratio
• Low CTE
• Low density

Using GNPs as filler
Schematic process to obtain GNPs

Natural graphite

Intercalation
\[\text{H}_2\text{SO}_4/\text{HNO}_3 \]

Thermal shock

Exfoliated graphite

Physical process
Microscopic observation of GNPs

Optical Microscopic

(a) Natural graphite

(b) Exfoliated graphite

Scanning Electron Microscopic
AFM of GNPs

Statistic size:

L ~ 1.1 μm, t ~ 1.7 nm, AR = 200; 4 layer graphene (G4)
GNP/epoxy composite

Challenges: High loading nano-material dispersion

Epoxy: Diglycidyl ether of bisphenol A

![Chemical structure of epoxy resin]

Even in lab scale, mechanical stirring is not enough

Curing agent: Diethyl-toluenediamine

Homogenizer: Shear mixing

Three roll mill
Schematic show of the composite process

Shear mixing & sonication in acetone

Exfoliated graphite

Cross section TEM image of GNP-Epoxy

Shear mixing
Cross-linking epoxy

Three-roll mill curing

GNP-Epoxy
High resolution TEM of GNP in epoxy matrix

$L \sim 1.1 \mu m$, $t \sim 1.7$ nm, $AR = 200$; 4 layer graphene (G4)
Thermal conductivity measurements: heat flow two thickness testing

Designed according to ASTM C518-98
From Lasercomp. Inc.
Thermal conductivity of the GNP/epoxy composites

Thermal Conductivity vs GNP Ratio

- Linear increase of thermal conductivity with filler loading
- Thermal conductivity up to (10.12 W/mK-40 Vol%) - suitable for electronic packaging, superior than conventional fillers
- In the T range of computer run, performance is good
Comparison of carbon fillers

GNPs filler perform better than other carbon fillers

GNP shows: **130% enhancement / 1 vol.%** – efficient filler

Whereas it is 20-30% for conventional fillers

Reason: High aspect ratio and rigid 2D structure of

Diagram:
- CB - carbon black
- GMP - graphite microplatelet
- MWNT - Multi-Walled Carbon Nanotubes
- SWNT - Single-Walled Carbon Nanotubes
- GNP - graphite nanoplatelet
Modeling prediction & discrepancy

1. Inverse Rule of Mixtures

\[\frac{K_c}{K_p} = \frac{1 + A B \phi_f}{1 - B \psi \phi_f} \]

2. Nielsen’s model accounts for the geometry of the fillers

\[A = k_e - 1 \]

\[B = \frac{K_f / K_p - 1}{K_f / K_p + A} \]

\[\psi = 1 + \left(\frac{1 - \phi_m}{\phi_m^2} \right) \phi_f \]

Experimental data are significantly lower than modeling prediction;
The model needs modification for nanomaterials
Summary of 2D-GNP/epoxy composite

- Thermal conductivity of GNP-epoxy resin composite is high up to 10.12 W/mK, which is excellent for thermal interface material application.
- Cost effective production: Graphite $50/Kg
- Highest filler efficiency using rigid 2D fillers
3 D Multi-functional Composites

- Biaxial Weave
- Triaxial Weave
- Knit
- Multiaxial Multilayer Warp Knit
- 3-D Cylindrical Construction
- 3-D Braiding
- 3-D Orthogonal Fabric
- Angle-Interlock Construction

Boeing 787 Dreamliner: composite materials for half of the parts, next generation Airplane material is not metal, will be carbon fiber matrix
Motivation and Objective

Motivation:
Matrix rich regions form defect in the carbon fiber - polymer composite
Cracking and failure usually start and propagate from these defect sites

Approach:
Carbon nanotube to reinforce matrix regions and void the defect in composite
Increase the carbon fiber – polymer interfacial interaction and load transfer

T. W. Chou, F. Ko, Textile Structural Composites, 1988
Bridging the scale from Nano to Macro

Atomic Interactions
- Stretching
- Bending
- Torsion
- van der Waals

Carbon Nanotubes
- Armchair
- Zig-Zag

Epoxy Matrix

Nanocomposite

Carbon Nanocomposite

Multi-Scale Composite

Modeling Hierarchy – Bridging the Scale from Nano to Macro
CNT reinforcement increases the interfacial interaction and the loading transfer and can avoid fiber pull-out.
CVD Deposition of CNTs on Carbon Fiber/Fabrics

- deposition of iron (Fe) for selective growth of CNTs

![Diagram showing the process of CVD deposition of CNTs on carbon fibers. The diagram includes the following steps:

1. Iron chloride (FeCl₃) solution is placed on the carbon fibers.
2. Hydrogen (H₂) is introduced to facilitate the reduction of iron oxide to form iron (Fe) and facilitate the growth of CNTs.
3. Ferrocene, mixed with p-xylene solution, is vaporized at a temperature of ~180°C, and the vaporized mixture is introduced into the reactor.
4. At a temperature of 700°C, multi-walled carbon nanotubes (MWNTs) grow on the iron-coated carbon fibers.

The diagram also highlights the iron-coated carbon fibers as a result of the deposition process.]
SEM of Carbon Fibers Coated with CVD-grown CNTs
Epoxy resin system

EPON 862 – EPI-Cure W Curing Agent
(Resolution Performance Products, Inc.)

Bisphenol-F Epichlorohydrin Epoxy

Aromatic Diamine (diethyltoluenediamine)

Amine hydrogen equivalent wt (AHEW) 43-46
Vacuum assisted infusion

Diagram showing Peel Ply, Vacuum Bag, Distribution Media, Resin Inlet, Vacuum Outlet, Tool, Layers of Glass Fabric, and Nanotube-Coated Carbon Fiber Bundles.
SEM observation of the composite

Carbon fiber

CNTs
Both in-plane and out-plane electrical conductivity increased about 17 % @ 0.5 wt% CNTs loading
Mechanical properties enhancement

Flexural strength and stiffness of CF/epoxy composites with and without CNTs were slightly improved.

Shear strength of CF/epoxy composites with and without CNT was enhanced at 35% (loadings of 0.2 and 0.5 wt %).
Summary

- CNTs had been deposited on carbon fiber surface

- Both in-plane and out-plane electrical conductivity increased about 17%

- Flexural strength and stiffness were slightly improved and shear strength of the carbon fiber epoxy was enhanced at 35% with 0.5 wt % of CNTs.
My work in SABIC Innovative Plastics

Aiping Yu
My work @ uwaterloo
My work @ uwaterloo

Super capacitor: a new energy storage device
My work @ uwaterloo

High loading multi-functional graphene/polycarbonate composite

Infiltration with polycarbonate → Sandwitch → Multilayer composite

Graphite → Oxidizing agent → Graphitic oxide

Graphene

Reducing agent

SEM

Cross-section

2 μm
Recent publications of graphene

![Graph showing publications in graphene field and polymer composite area](chart.png)
Welcome collaborations and suggestions for applying carbon nanotubes and graphene to polymer composites

Thanks a lot for your attention