Arborescent Polymers as Templates for the Preparation of Metallic Nanoparticles

Jason Dockendorff
Department of Chemistry
University of Waterloo
Outline

1. Focus and Purpose of Research
2. The Template
3. Results
4. Conclusions & Future Work
Main Focus

To synthesize and use amphiphilic arborescent copolymers as templates for the construction of metallic nanoparticles.
Nanoparticle Applications

Metal-loaded Polymers

Modified Metallic Nanoparticles

Stabilized Catalysts

Biological Labelling

Destructive Cell Targeting
Nanoparticle Applications

• Biological labelling
Nanoparticle Applications

• **Destructive cell targeting**

• **Polymer stabilized colloid catalysts**
Arborescent Polymers

• Branched structure obtained from successive grafting reactions

1) Functionalization
2) Grafting

Linear

G0

G1

G2

Copolymers obtained by coupling with a different polymer in the last cycle

Synthesis

Amphiphilic block copolymer (P2VP-block-PS)

Functionalized substrate (G0 PS shown)

G0 PS-graft-(P2VP-block-PS)

amphiphilic arborescent copolymer
Selective Reactions

Polymer loading and reduction

Other loadable metal salts:
- Palladium - Pd(OAC)$_2$
- Platinum - K(PtCl$_3$C$_2$H$_4$)
- Rhodium - [Rh(CO)$_2$Cl]$_2$
Plasma can be used to reduce metal and remove polymer in one step.

Loading and Deposition

- HAuCl₄, Pd(OAC)₂, K(PtCl₃C₂H₄), or [Rh(CO)₂Cl]₂
- Cast on substrate
- Heat
- Bare metallic nanospheres
- Polymer stabilized metallic nanospheres
Arborescent Polymer Templates

Unique Characteristics

Static Structure

Size Control

Activity Tailoring

Hollow Structure

Loading Versatility
Agenda

1. Focus and Purpose of Research
2. The Template
3. Results
4. Conclusions & Future Work
Preliminary tests

Linear block copolymer used to validate loading procedure

\[
\text{PS-}b\text{-P2VP}
\]

\[
M_w(\text{PS}) = 29\,000\ (DP=277)
\]
\[
M_w(\text{P2VP}) = 33\,500\ (DP=320)
\]

\[
\text{PS}(277)-b\text{-P2VP(320)}
\]

DP – Degree of Polymerization
PS(277)-b-P[2VP(HAuCl₄)₀.₅(320)]

0.5 eq loading

100nm
Arborescent Polymer Loading
G1PS-\(g-\{PS(66)-b-P[2VP(HAuCl_4)_{0.5}(89)]\}\)

Extensive aggregation \rightarrow Increase length of PS chains in corona to shield charges
G1PS-g-{PS(144)-b-P[2VP(HAuCl₄)₀.₅(144)]}
G1PS-g-{PS(144)-b-P[2VP(HAuCl₄)₀.₅(144)]}
Size Populations

G1PS-g-\{PS(144)-b-\text{P[2VP(HAuCl}_4)_{0.5}(144)\}}

Population I (solid): 20 ± 2 nm
Population II (rings): 32 ± 2 nm
Structure Analysis

Solid Structures: Linear side-chain micelles

Ring Structures: Graft copolymer
Structure Analysis

Electron Beam

TEM Grid

Arborescent Molecule
Structure Analysis

Could the rings be aggregates of side-chain micelles?

Toluene

THF
Purification
Size and Aggregation

Can aggregation be controlled using a more polar solvent?
Size and Aggregation

<table>
<thead>
<tr>
<th>Sample</th>
<th>Toluene 1st</th>
<th>Toluene 2nd</th>
<th>THF 1st</th>
<th>THF 2nd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core (G1PS)</td>
<td>24.4 ± 0.3</td>
<td>23.8 ± 0.6</td>
<td>26.9 ± 0.1</td>
<td>26.3 ± 0.2</td>
</tr>
<tr>
<td>PS(66)-b-P2VP(89)</td>
<td>50.0 ± 0.4</td>
<td>49.5 ± 0.4</td>
<td>56.1 ± 0.2</td>
<td>55.3 ± 0.4</td>
</tr>
<tr>
<td>+ 0.5eq Au</td>
<td>85 ± 7</td>
<td>61 ± 4</td>
<td>51.7 ± 0.6</td>
<td>50.8 ± 0.4</td>
</tr>
<tr>
<td>Core (G1PS)</td>
<td>28.2 ± 0.1</td>
<td>26.6 ± 0.2</td>
<td>29.6 ± 0.3</td>
<td>28.2 ± 0.2</td>
</tr>
<tr>
<td>PS(95)-b-P2VP(95)</td>
<td>53.2 ± 0.2</td>
<td>52 ± 1</td>
<td>63.2 ± 0.2</td>
<td>61.5 ± 0.2</td>
</tr>
<tr>
<td>+ 0.5eq Au</td>
<td>90 ± 1</td>
<td>77 ± 2</td>
<td>56.2 ± 0.4</td>
<td>54.5 ± 0.5</td>
</tr>
<tr>
<td>PS(144)-b-P2VP(144)</td>
<td>72.9 ± 0.9</td>
<td>67 ± 1</td>
<td>76.3 ± 0.5</td>
<td>74.2 ± 0.9</td>
</tr>
<tr>
<td>+ 0.5eq Au</td>
<td>122 ± 3</td>
<td>97 ± 3</td>
<td>64.1 ± 0.2</td>
<td>63.1 ± 0.4</td>
</tr>
</tbody>
</table>
Plasma Etching and Reduction
Hydrogen Plasma Etching
Hydrazine Reduction
UV-Vis Absorbance

Absorbance (a.u., normalized to peak)

Wavelength (nm)

- HAuCl₄
- JD004
- JD013
- JD014
- Reduced
Conclusions

• Different arborescent copolymer templates successfully loaded with gold

• Ring-like structures observed, consistent with hollow metallic nanosphere morphology

• Aggregation can be controlled through synthetic procedure and/or solvent changes
Future Work

- Optimization and control of metal reduction and polymer etching to yield one metallic particle per micelle.

- Load templates with catalytic materials and test for stability, selectivity, and reactivity

- Synthesize a series of arborescent copolymers with systematic variations in dimensions of core and shell
Acknowledgements

Dr. Mario Gauthier
&
Lab Colleagues

Dr. Jean Duhamel & Lab Colleagues

DWI Institute, RWTH Aachen, Germany

Dr. Martin Möller
Dr. Ahmed Mourran
Dr. Oliver Weichold
Yvonne Noppeney

NSERC, OGS, DAAD, Department of Chemistry
Thank you!

Questions?