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The non-reactivity along with low surface energy lead to very weak adhesion and friction of 
fluoropolymers, making them ideal candidates for fabrication of non-sticky and releasing 
surfaces. However, possessing low dielectric constants and high electronegativite fluorine-based 
units, fluoropolymers can become highly charged at the surface upon contact with other 
materials via the so-called contact electrification phenomenon, leading to formation of 
electrostatic interactions at the surface. The electrostatic forces developed via contact 
electrification (the same incident that generate charges over a piece of amber when it is rubbed 
against wool) can generate large work of adhesion which is even comparable to the fracture 
energies of ionic-covalent materials.1-3 In view of that and considering that an efficient 
triboelectric charging requires enhanced actual area of contact, for the first time, we have 
fabricated a novel electrostatic-based dry adhesive by developing high aspect-ratio (AR) 
nanopillars on a rigid fluoropolymer (Teflon AF).4-6 Due to the extremely high AR of nanopillars 
which are terminated at the tip with a peculiar (fluffy) sheet-like nanostructure (inspired by the 
sticky fibrillar structure of gecko lizard foot pads) (see Figure 1), the fabricated dry adhesive can 
come into an ultimate contact, leading to enhanced adhesion and friction. Unlike gecko and other 
synthetic dry adhesives, which require efficient van der Waals interactions upon contact, the 
fabricated dry adhesive is the only one of its kind which relies for the most part on electrostatic 
interactions.4-6  
 

 
 
Figure 1. SEM image of bi-level Teflon AF nanopillars (45°-view). Extremely high AR Teflon AF nanopillars (200 nm in 
diameter) are terminated at the tip with a unique fluffy nanostructure. The magnified image is from the top-view.6 
 
In this research, bi-level nanopillars of various heights and hierarchy features (as a dry adhesive) 
were fabricated from Teflon AF 1600 (DuPont) by using anodic aluminum oxide (AAO) 
membranes (0.2 µm pore diameter, 60 µm thick, pore density 25-50 %; Whatman Inc.) as the 
mold. As shown in Figure 2, the polymer granules were placed over the AAO membrane and, 

IP
R 20

13



2 
 

subsequently, the polymer and the mold were heated from the bottom to reach the constant 
desired "heating temperature" above the glass transition temperature of the polymer (Tg = 160 
°C).7 From the top, the polymer was cooled down by setting the "cooling temperature" at a 
temperature much lower than the glass transition temperature of the polymer. 
 

 
 
Figure 2. Schematic of the procedure for fabrication of bi-level Teflon AF nanopillars. The precursor film of the polymer 
melt, which was formed at the forehead of the developing polymer melt confined within AAO nanopores, fingered over 
the pore walls. Upon removal of the mold, the collapse and entanglement of the developed brush-like nanostructure led to 
formation of a fluffy nanostructure on top of the base Teflon AF nanopillars.  
 
Upon infiltration of the Teflon AF melt into the AAO nanopores at elevated temperatures, like 
other polymers, the polymer melt spread over the pore walls (because of the large difference in 
surface energy of the polymer and the mold) and formed a thin nanoscopic precursor film at the 
forehead of the developing polymer melt. However, due to the very low surface energy of the 
polymer (15.7 mJ/m2),7 the thermocapillarity-driven stresses at the contact line of the precursor 
film have led to instability of the precursor film and its fingering over the pore walls (Figure 2).4-

6 The very soft nanostructure of the developed brush-like hierarchical level, after solidification of 
the polymer and dissolving the mold in NaOH solution (1.25 M), instantly collapsed during the 
drying step, resulting in formation of an exceptional fluffy nanostructure on top of the base 
nanopillars of ~200 nm in diameter (see Figure 1). As drying continued, the sheet-like 
nanostructure, with sufficiently high density and large size, held the tip of the base nanopillars 
away from each other and, accordingly, hindered the lateral collapse at the tips during the drying 
step (see Figure 1).4-6 
 
In the current fabrication method, by enhancing the "heating temperature" and keeping the 
"cooling temperature" constant (i.e., increasing the temperature gradient), the size (length and 
width) of the hierarchical fingered brushes was decreased while their density increased. In 
addition to size and density of the fingered brushes, adjusting the heating temperature also 
altered the infiltration depth of the polymer melt and, accordingly, the height of the fabricated 
nanopillars. Particularly, by setting the "heating temperature" to 270, 300, 330, or 360 °C, 
nanopillars with heights of approximately 5.5, 16, 37, or 45 µm were fabricated, respectively (for 
fabrication of all samples, the "cooling temperature" was kept constant at the room 
temperature).5,6 At the low density of the top terminating layer (corresponding to the lowest 
temperature gradient), due to the high AR of nanopillars (AR = 27.5), the nanopillars collapsed 
at the tip and formed an island-like structure (see Figure 3A). However, by increasing the density 
of the hierarchical level on top (see Figures 3B and 3C), extremely high AR nanopillars (AR = 
80 and 185, respectively) were fabricated. For taller pillars (AR = 225), although the terminating 
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nanostructure was very dense, due to its small size, the top layer could not hold itself together 
and the characteristic self-sticking of pillars at the walls led to the bundling of pillars into an 
island-like structure, but this time at the cost of shrinkage of the top nanolayer.5,6 It is worthwhile 
mentioning that keeping the "heating temperature" constant while changing the "cooling 
temperature" allows the fabrication of bi-level Teflon AF nanopillars of identical heights but 
with terminating nanostructures of distinct geometrical properties. However, for the sake of 
brevity, the cases where the "cooling temperature" was changed will not be discussed in the 
current report. 
 

 
 
Figure 3. SEM images of bi-level Teflon AF nanopillars of different geometrical properties; nanopillars with different 
heights of approximately A) 5.5 µm, B) 16 µm, C) 37 µm, and D) 45 µm, have been fabricated by setting the "heating 
temperature" to 270, 300, 330, and 360 °C, respectively ("cooling temperature" was kept constant at the room 
temperature). The images show the top-view of the samples while the magnified images are from the 45°-view.6 
 
The adhesive and frictional properties of the fabricated nanopillars as well as those of the flat 
Teflon AF (as the control sample) were characterized by indentation and load-drag-pull (LDP) 
tests, respectively. The tests were performed using an 8 mm in diameter hemispherical fused 
silica (ISP Optics Corp.) probe. The same as with flat control samples, negligible pull-off forces 
were detected for the tallest nanopillars (sample D; ~45 μm tall), which were attributed to the 
collapse and bundling of the nanopillars and accordingly the very small actual area of contact 
(see Figure 4).5,6,8-10 However, for one level shorter nanopillars (sample C; ~37 μm tall) which 
did not collapse at the tip because of the presence of the terminating layer on top, substantial 
pull-off forces were detected while still lower than those for sample B with nanopillars of ~16 
μm tall. Even though sample B had a lower surface area available for contact in comparison to 
sample C (as detected by water contact angle measurement tests), it showed a remarkably 
superior adhesion performance, most likely due to a lower chance of buckling during loading 
because of the lower height compared to the 37 μm tall pillars.5,6,8-10 Sample B reached the 
astonishing adhesion strength value (pull-off force per unit surface area) of ~1.6 N/cm2, while 
sample C showed a lower efficiency (i.e., adhesion strength of ~1.1 N/cm2), although both 
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performed better than a gecko foot pad (see Figure 4).5,6 As the height decreased further (sample 
A, ~5.5 μm tall), it was observed that the pillars showed remarkable adhesive properties at low 
preloads, while at higher preloads their efficiency in generating adhesion compared to more 
flexible taller pillars was lower, as expected.5,6,8 The 5.5 μm tall nanopillars showed very high 
achievable adhesion strength of ~1.3 N/cm2 at a very small preload of ~12 mN.  
 

 
Figure 4. The adhesion strength and the corresponding preload for bi-level nanopillars with different heights of ~5.5, 16, 
37, and 45 μm (samples A, B, C, and D, respectively); the red dashed line shows the normal adhesion strength of natural 
gecko (1 N/cm2).6 
 
Due to the geometrical properties of the shortest nanopillars (i.e., low density of the hierarchical 
level), these nanopillars can make an effective sidewall contact with the fused silica probe (see 
Figure 3A), most likely leading to their observed improved effective shear strength as observed 
in LDP tests;5,6 sample A reached the remarkable shear strength value of ~12 N/cm2 at a 25 mN 
preload (Figure 5), ~20% higher than that of a natural gecko (i.e., 10 N/cm2).  
 

 
 
Figure 5. Effective shear strength at the start of the dragging step in LDP tests for bi-level Teflon AF nanopillars with 
different heights of ~5.5, 16, 37, and 45 μm (samples A, B, C, and D, respectively) at nominal preloads of 5, 10, 17.5, and 
25 mN. The red dashed line shows the shear strength of natural gecko (10 N/cm2) reported in the literature.6 
 
Even though for mid-sized nanopillars the elevated density of the top terminating layer hindered 
the sidewall contact, the sheet-like structure of the top layer helped these nanopillars to still 
generate large shear strength values (up to ~3 and 7 N/cm2 for samples B and C, respectively).5,6 
In comparison to these nanopillars, the bundled 45 μm tall nanopillars (sample D) reached a 
relatively moderate effective shear strength (up to ~4 N/cm2), most likely due to their ability to 
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generate minor sidewall contact with the probe (see Figure 5), even though they still had a low 
actual surface area because of the bundling effect.5,6,8,9 
 
In summary, we reported the fabrication of bi-level Teflon AF fibrillar nanostructures of various 
geometrical properties, as a new generation of dry adhesives. These nanostructures work based 
on electrostatic interactions at the surface rather than van der Waals forces (based on which most 
other dry adhesives are operating). By means of a novel fabrication method, the nanopillars were 
terminated at their top by a unique sheet-like nanostructure, effectively hindering the self-
sticking of high-aspect-ratio and high-density nanopillars. The generated adhesion and friction 
strengths by these nanopillars not only matched those of gecko (a typically used upper limit from 
nature) but also surpassed them by ~60 and 20%, respectively. 
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