
Parameter Estimation in Polymerization Systems Using Markov Chain Monte 
Carlo Methods 

M. Mathew, T. Duever, IPR Symposium, University of Waterloo, ON N2L 3G1, Canada 

Classical parameter estimation techniques such as non-linear least squares and maximum likelihood 

have been extensively applied to non-linear models. However, one limitation in using such methods 

is that they often involve optimization techniques that may only converge to a local minimum 

instead of the desired global minimum. In addition, capturing parameter uncertainty requires 

applying formulas derived from linear regression, resulting in approximate confidence regions. Both 

these issue can be addressed using Markov Chain Monte Carlo methods; a technique that not only 

provides reliable parameter point estimates but also produces joint confidence regions (JCRs) with 

exact shape and exact probability content. In light of these advantages, MCMC methods will be 

applied to estimate reactivity ratios in the copolymerization of di-n-butyl itaconate (DBI) and 

methyl methacrylate (MMA). The reactivity ratios will be determined using both the Mayo-Lewis 

and Meyer Lowry Models, and the data will be analyzed using MCMC methods and compared to 

classical regression approaches.   

Markov Chain Monte Carlo Technique  

The goal of parameter estimation is to find parameter values that minimize the difference between 

the predicted and experimentally observed values. To accomplish this, Markov Chain Monte Carlo 

starts by randomly drawing samples from the posterior probability distribution function. Since 

drawing samples with the correct frequency from this probability function can be problematic, there 

are a variety of MCMC sampling methods available. The method used in this study is known as the 

Metropolis Hastings algorithm, which was first proposed by Metropolis and Rosenbluth (1953) and 

later generalized by Hastings (1970).   

After a sufficient amount of samples are generated, parameter point estimates can be determined by 

taking the expected value of the samples; a technique that is referred to as Monte Carlo integration. 

Therefore, by using MCMC methods, complex optimization algorithms can be replaced by a simple 

Monte Carlo integration.  

In addition to parameter point estimates, the samples can also be used to construct 95% joint 

confidence regions. Since the samples are being drawn from the exact probability density function, 

the JCRs will have exact shape and exact probability content.   
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  Case Study: Di-n-Butyl Itaconate/Methyl Methacrylate 

The free radical copolymerization of di-n-butyl itaconate (DBI) and methyl methacrylate (MMA), 

conducted by Madruga and Fernandez-Garcia (1994), will be used as a case study to illustrate the 

implementation and advantages of MCMC methods. The free radical copolymerization was carried 

out in benzene at 50ºC and at low conversions levels. The data obtained from the experiment will be 

studied using both the Mayo-Lewis and Meyer Lowry models.    

Reactivity Ratio from Mayo-Lewis Model 

The Mayo-Lewis model, shown in equation 1, provides a relationship between the instantaneous 

copolymer composition, the monomer feed composition and the reactivity ratios. The model is only 

valid, however, at low conversion levels due to the inherent assumption that the compositional drift 

in the monomer feed is negligible.  

𝐹1 =  
𝑟1𝑓12 + 𝑓1𝑓2

𝑟1𝑓12 + 2𝑓1𝑓2 +  𝑟2𝑓22
                                                           (1) 

Using the copolymerization data and the above model, the Metropolis-Hastings algorithm was 

executed for 1,000,000 cycles. The average of the samples was taken to determine the reactivity 

ratio point estimate and 95% joint confidence region was constructed. The JCRs from the MCMC 

algorithm were then compared to the JCRs in Kazemi et al., (2011) where a linear regression 

approach was employed. The findings are summarized in figure 1.   

 

Figure 1: Point estimates and joint confidence regions for the reactivity ratios using the Mayo-

Lewis Model in copolymerization of DBI/MMA. The data was analyzed using both MCMC and 

classical regression approaches.  
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Although point estimates are important, they need to be complimented by the corresponding JCRs 

in order to fully understand the system. The joint confidence region arises from the uncertainty in 

the data and it represents all the possible values of r1 and r2. Comparison of the two approaches in 

figure 1 shows that although both methods provides JCRs with similar shape, the linear regression 

approach overestimate the uncertainty in the reactivity ratios. When using the approximate JCRs, a 

significant amount of r1 and r2 values are included when they should be excluded based on a 

confidence level of 95%.  

Different JCRs for both methods also translate to a significant difference in the Mayo-Lewis plot. In 

figure 2, the middle curve represents the Mayo-Lewis plot obtained using the reactivity ratio point 

estimates. The other curves to the right and left of this line indicate the upper and lower limits for 

each method, obtained by taking lowest and highest points in both JCRs.  

 

Figure 2: The Mayo-Lewis plot for the copolymerization of DBI/MMA, using the final molar 

composition, FDBI, and the initial monomer feed composition, fDBI. The five curves represent how 

the Mayo-Lewis relationship changes at different uncertainty levels.   

Figure 2 shows significant differences between the two approaches, especially at a higher mole 

fraction of DBI. This example further demonstrates the importance of accurately capturing 

uncertainty in non-linear models and provides strong motivation for applying MCMC methods to 

non-linear models  

Reactivity Ratio from Meyer-Lowry Model 

The Mayo-Lewis equation was integrated by Meyer and Lowry (1965) and the analytical solution is 

known as the Meyer-Lowry Model, shown in equation 2. The assumption of negligible 
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compositional drift is no longer an issue since the Meyer-Lowry Model taken into account the 

conversion of the polymerization reaction. This model can therefore be applied to data obtained at 

low to moderate conversion levels.  

𝑋𝑁 = 1 − �
𝑓10 −  𝐹1� 𝑋𝑛
𝑓10(1 − 𝑋𝑛)

�
𝛼

�
1 −  𝑋𝑛 − 𝑓10 −  𝐹1� 𝑋𝑛

(1 − 𝑓10)(1 − 𝑋𝑛)
�
𝛽

∗ �
(𝛿 − 𝑓10)(1 − 𝑋𝑛)

𝛿 − 𝛿𝑋𝑛 −  𝑓10 + 𝐹1� 𝑋𝑛
�
𝛾

      (2) 

Where,  𝛼 =  𝑟2
(1− 𝑟2)

, 𝛽 =  𝑟1
(1− 𝑟1)

, 𝛾 =  1− 𝑟1𝑟2
(1− 𝑟1)(1− 𝑟2)

  𝛿 =  (1− 𝑟1)
(2− 𝑟1−𝑟2)

 

In equation 2, the variables 𝐹1� , 𝑋𝑛 and 𝑓10 represents the cumulative copolymer composition, molar 

conversion and the initial monomer mole fraction respectively. Implementation of the MCMC 

technique for the Meyer-Lowry Model is slightly more challenging since equation 2 is in implicit 

form. Therefore, a MCMC algorithm must be coupled with a root finding algorithm that solves 

for 𝐹1� . Due to computational limitation, Metropolis-Hastings algorithm was only executed for 

100,000 cycles. The reactivity ratio estimates and confidence regions are once again summarized in 

Figure 3.  

 

Figure 3: Point estimates and joint confidence regions for the reactivity ratios using the Meyer-

Lowry Model in copolymerization of DBI/MMA. The data was analyzed using both MCMC and 

classical regression approaches. 

The MCMC results shown in figure 3 indicate a confidence region that is not elliptical due to the 

non-linear nature of the model. It is also evident from figure 3 that using approximate JCRs will not 

capture the uncertainty in the parameter estimates accurately. The results are yet another example of 

the effectiveness of MCMC, especially when the model is highly non-linear.    
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Non-Linear Regression Approach

Experimental Data

•Data ideally from designed experiments

•Can be multi-input and multi-response 
data 
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Experimental Data

Non-Linear Regression Approach

Model 

•Error in Variables Model (EVM) takes 
into account error in all the variables 

xi= xi
* + xi
 

yi =yi
* + yi
 

yi
* = f(x*, )
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Experimental Data

Model

Model 

•Normally, error in only the dependent 
variable (y) is considered

 
yi =yi

* + yi
 

yi
* = f(x, ) 

 
•Can be extended to multi-response 
multi-input models 

Non-Linear Regression Approach
Measurement Error

•Assume the error is normally distributed 

•Assume  constant error for all the 
experimental runs 

Experimental Data

Measurement 
Error

Model

5 

Non-Linear Regression Approach

Experimental Data

Measurement 
Error

ure

Bayesian Approach

Model

n Ap

Bayesian Approach 

•A Bayesian approach allows us to use prior parameter 
knowledge 

Posterior
Distribution 

Prior
Distribution 

Likelihood  
Function
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Non-Linear Regression Approach

Experimental Data

Measurement 
Error

ure

Bayesian Approach

Model

n Ap
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•A non-informative uniform prior is used when no prior 
information is known

Prior Distribution 

Likelihood Function 

Posterior
Distribution 

Prior
Distribution 

Likelihood  
Function

Non-Linear Regression Approach

Experimental Data

Measurement 
Error

ure

Bayesian Approach

Model

n Ap

Optimization miz

Optimization  

•Parameter estimation involves finding the parameter 
values that maximize the posterior distribution 
function

Limitation 

The optimization may find a local minimum instead 
of the desired global minimum

8 

Joint Confidence Regions
Elliptical Approach

Correct Shape Approximation

Markov Chain Monte Carlo
Correct Shape and Correct Probability Content

9 

Wrong Shape  And Wrong Probability Content

Correct Shape But Wrong Probability Content

Markov Chain Monte Carlo

P( |D) 

Accept

May or 
may not 
accept

Posterior DistributionProposal Distribution: 
Uniform Distribution
Accept or Reject the 
Candidate Sample 
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Sample From The 
Proposal Distribution

*

*

*

Initial 

Markov Chain Monte Carlo

P( |D) 
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Polymerization Case Study
•Estimate reactivity ratios and JCR in copolymer systems 
using Mayo-Lewis Model and Meyer-Lowry Model

•Free radical copolymerization of Di-n-Butyl Itaconate 
and Methyl Methacrylate 

•Reactivity ratios are used for understanding the 
properties of polymeric materials

•Important in the control and operation of polymerization 
reactions

12
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Mayo-Lewis Model

•Relationship between the instantaneous copolymer 
composition and the monomer feed composition

•F1 is the copolymer composition, f1 is the monomer 
feed composition and r1 and r2 are the reactivity ratios
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MCMC Output
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•Joint confidence region and point estimate obtained from MCMC simulation 
using Mayo-Lewis Model for the copolymerization of Di-n-Butyl Itaconate and 
Methyl Methacrylate 
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•The elliptical approach will yield JCRs with the wrong probability content  
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Mayo-Lewis Plot 
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•Different Mayo-Lewis curves obtained when using MCMC vs. Elliptical 
Approximation

Meyer-Lowry Model
•Meyer-Lowry Model takes into account the conversion, XN

18
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JCR for Meyer-Lowry Model
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•Joint confidence region and point estimate obtained from MCMC simulation 
using Meyer-Lowry Model for the copolymerization of Di-n-Butyl Itaconate 
and Methyl Methacrylate 
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•The elliptical approach will yield JCRs with the incorrect shape and 
probability content 
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Conclusions 

•Applied MCMC methods to a polymerization case study

•Used a EVM model that can be used as a general  
regression framework

•Advantages of using MCMC
1. Easier approach when compared to optimization
2. Mayo-Lewis results showed that using a elliptical 
approach produces JCRs with the wrong probability 
content
3. Meyer-Lowry results showed that the elliptical 
approach does not provide the correct shape   
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Future Work
•WAT-Poly Program 

•Continue parameter estimation in more a complicated 
model

•Previous work showed that accurate point estimates 
and JCR could not be obtained due to a complex sum of 
squares surface 
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•Computationally intensive
• Use SHARCNET computer cluster to run program in 
parallel
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Metropolis Hastings Algorithm

Sample point Yt from a Proposal Distribution

Acceptance Criterion

Where U is a sample from a uniform distribution (0,1)

Initial Guess Xo

If Candidate is Accepted: Xt+1 = Yt
Otherwise: Xt+1 = Xt

a P

Acc
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Integrated Cumulative Model

•The differential equation must be solved numerically 
along with the MCMC algorithm 
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JCR for Integrated Cumulative Model
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The linear approach will again give JCRs that have incorrect probability 
content
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