Production and Analysis of Highly Monodisperse Oligomeric Poly(Ethylene Oxide)

IPR Symposium May 09 2018

UNIVERSITY OF

VATERLOO

Junjie Yin

Adam Raegen

James Forrest

Introduction	PEO and sample information
	Review of PEO crystallization
Technique and Products	Production technique
	MALDI-TOF results of products
Analysis on Crystallization	DSC measurements
	Crystal growth rates
Conclusions	Work done
	Future work
	STATISTICS OF

WATERLOO

Introduction

How does N affect crystallization behaviours?

MALDI spectrum of neat sample

(Matrix-Assisted Laser Desorption/Ionization - Time Of Flight mass spectrometry)

 M_n =587.7 M_w =606.3 PDI=1.032

polymer crystallization

Folded chain model

Gibbs Thomson relation

$$T_m = T_m^\infty (1 - \frac{2\sigma_e}{l\Delta h})$$

 $σ_e$: interfacial energy between amorphous and crystalline phases $T_m^{\infty} = 342K \text{ for PEO}$

polymer crystallization

Gibbs Thomson relation

$$T_m = T_m^{\infty} (1 - \frac{2\sigma_e}{l\Delta h})$$

 $σ_e$: interfacial energy between amorphous and crystalline phases $T_m^{\infty} = 342$ K for PEO

Production and Analysis of Highly Monodisperse Oligomeric PEO

ideal: $T_m = T_m^{\infty}$

Makromol. Chem. 185,1559-1563 (1984)

polymer crystallization

Folded chain model

Gibbs Thomson relation

$$T_m = T_m^{\infty} (1 - \frac{2\sigma_e}{l\Delta h})$$

 $σ_e$: interfacial energy between amorphous and crystalline phases $T_m^{\infty} = 342$ K for PEO

PEO crystallization

WATERLOO

J. POLYMER SCI.: Symposium No. 50, 283-325 (1975)

polymer crystallization

Gibbs Thomson relation

$$T_m = T_m^{\infty} (1 - \frac{2\sigma_e}{l\Delta h})$$

 $σ_e$: interfacial energy between amorphous and crystalline phases $T_m^{\infty} = 342$ K for PEO

PEO crystallization

Production Technique

UNIVERSITY OF

MALDI-TOF Results

MALDI-TOF Results

MALDI-TOF Results

Evolution of n(N) with respect of evaporation time

(Differential Scanning Calorimetry)

(Differential Scanning Calorimetry)

 $(\gamma_{amo} = 98.4 \text{mJ/m}^2)$

Colloid and Polymer Science, 254(8), 695-715 Blaine, R. L. (2002). *Texas Instruments. European Polymer Journal*, 44(12), 4146-4150

(Differential Scanning Calorimetry)

 $(\gamma_{amo} = 98.4 \text{mJ}/\text{m}^2)$

Colloid and Polymer Science, 254(8), 695-715 Blaine, R. L. (2002). *Texas Instruments*. *European Polymer Journal*, 44(12), 4146-4150

(Differential Scanning Calorimetry)

lamella thickening?

PAGE 7

(Differential Scanning Calorimetry)

Makromol. Chem. 185,1559-1563 (1984)

 $\Delta H_f^{\infty}(T_m) = 197 \text{J/g},$ enthalpy of melting of PEO with 100% crystallinity Blaine, R. L. (2002). *Texas Instruments*. *European Polymer Journal*, *39*(8), 1721-1727.

Degree of Crystallinity \mathbf{X}_{c}

Journal of Polymer Science: Polymer Symposia (Vol. 59, No. 1, pp. 31-54).

WATERLOO

Conclusions

- Work done:
- 1. Evaporative purification achieved PDI ~6 times better
- 2. DSC measurements (T_m difference between mono- and poly-disperse)
- 3. Crystal growth rate measurements
- Future work
- 1. Even lower PDI (larger scale, shorter collection intervals)
- 2. Crystal growth rate measurements (near T_m)
- 3. X-ray measurements (lamella information)

References

- Yeates, S. G., Teo, H. H., Mobbs, R. H., & Booth, C. (1984). Ethylene glycol oligomers. *Macromolecular Chemistry and Physics*, *185*(8), 1559-1563.
- Kovacs, A. J., Gonthier, A., & Straupe, C. (1975, January). Isothermal growth, thickening, and melting of poly (ethylene oxide) single crystals in the bulk. In *Journal of Polymer Science: Polymer Symposia* (Vol. 50, No. 1, pp. 283-325). Wiley Subscription Services, Inc., A Wiley Company.
- Buckley, C. P., & Kovacs, A. J. (1976). Melting behaviour of low molecular weight poly (ethylene-oxide) fractions. *Colloid and Polymer Science*, *254*(8), 695-715.
- Blaine, R. L. (2002). Thermal applications note polymer heats of fusion. *Texas Instruments, New Castle Google Scholar*.
- Spěváček, J., & Baldrian, J. (2008). Solid-state 13C NMR and SAXS characterization of the amorphous phase in low-molecular weight poly (ethylene oxide) s. *European Polymer Journal*, *44*(12), 4146-4150.
- Kovacs, A. J., Straupe, C., & Gonthier, A. (1977, January). Isothermal growth, thickening, and melting of polyethylene oxide) single crystals in the bulk. II. In *Journal of Polymer Science: Polymer Symposia* (Vol. 59, No. 1, pp. 31-54). Wiley Subscription Services, Inc., A Wiley Company.

UNIVERSITY OF WATERLOO

THANK YOU!

Vapor Pressure Calculation

J. Phys. Chem. 80(21), 2352-2362

Vapor Pressure Calculation

PHYSICAL REVIEW MATERIALS 1, 025605 (2017)

