

Epoxy Resin Enabled Robust and Multifunctional Binders for High Energy Lithium-Sulfur Batteries

Longlong Yan, <u>Xiguang Gao</u>, Farihah Wahid-Pedro, Jesse Thomas Ernest Quinn,
Yuezhong Meng, and Yuning Li

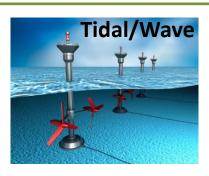
Printed Electronic Materials Lab, Department of Chemical Engineering

Supervisor: Prof. Yuning Li

May 9, 2018

2018 IPR Symposium, University of Waterloo, Waterloo, Ontario

Demand for Rechargeable Batteries

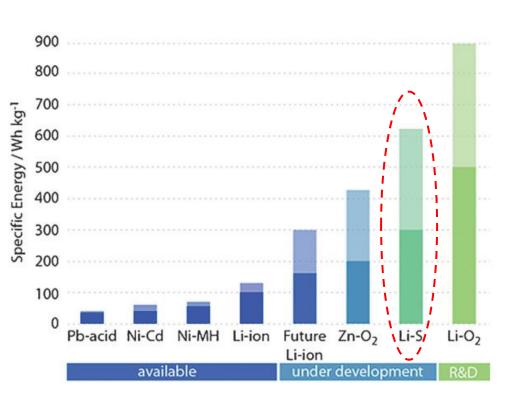


Electronics

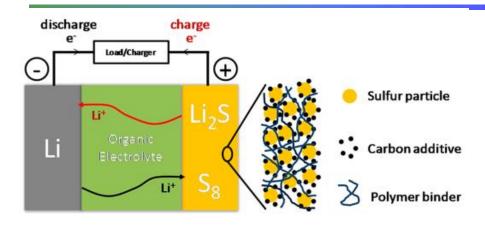
Intermittent Energy Sources

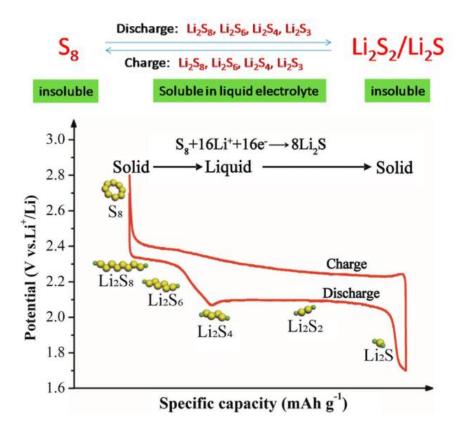
- **Energy Density**
- Safety
- Life
- **Cost**

Electric Vehicles (EVs) & Hybrid EVs



Current Status of Batteries

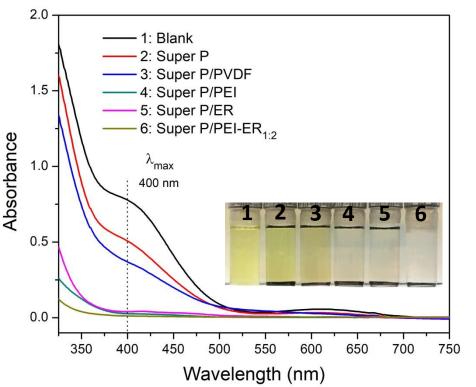

Advantages of Li-S batteries


- ➤ High theoretical specific energy

 (2567 Wh kg⁻¹ vs 387 Wh kg⁻¹ for

 Li-ion batteries)
- Environmental friendliness
- Low cost

Challenges Facing Li-S Batteries



- The insulating nature of sulfur and Li_2S (5×10⁻³⁰ S cm⁻¹ at 25 °C for sulfur, incorporation of sulfur in conductive carbon matrix lowers specific energy)
- Dissolution of lithium polysulfides in the electrolyte (irreversible loss of active material; shuttle problem lowers charging efficiency; impedance increase and cathode passivation due to sulfur redistribution)
- Volume change from sulfur to Li₂S
 (density 2.07 g cm⁻³ for octasulfur vs 1.66 g cm⁻³ for Li₂S, resulting in 80 % volume expansion)
- The use of metallic lithium anode (lithium dendrites formation, inactive dead Li formation, etc.)

Acc. Chem. Res. 2013, 46, 1125-1134 Adv. Mater. 2017, 1606823

PEI-ER Binder vs Conventional PVDF Binder

Li₂S₆ adsorption experiment

Conclusions

- Both PEI and ER have stronger binding effect toward Li₂S₆ than PVDF
- Crosslinked PEI-ER polymer inherited the Li₂S₆ adsorption ability from its parent components
- The newly-developed PEI-ER binder has the potential to mitigate the deleterious lithium polysulfides shuttle problem

4

Acknowledgement

Group members:

Jenner Ngai, Arthur Hendsbee, Xiaocheng Zhou, Han Meng, Jiaxin Zhu

Funding source:

NSERC

