Experimental Study of Polyvinyl Alcohol Degradation in Aqueous Solution by UV/ H₂O₂ Process

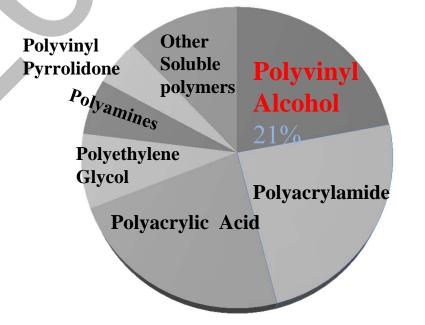
> Dina Hamad, Ramdhane Dhib, Mehrab Mehrvar Chemical Engineering Department Ryerson University

36th Annual Symposium on Polymer Science/Engineering Institute for Polymer Research, Waterloo University May 21, 2014

Outline

- ➢ Introduction
- > Objectives
- Experimental Setup
- Results and Discussion
- Concluding Remarks

Introduction


Water Soluble Polymers: PVA, PAA, PEG, PAM,....

Synthetic polymers that can dissolve, disperse or swell in water.

- Large scale production
- ➢ Wide spectrum of applications

Considerable amounts of PVA-containing wastewater: production, use, and disposal

Released into the aqueous environment

World Consumption of Water-Soluble Polymers

Introduction

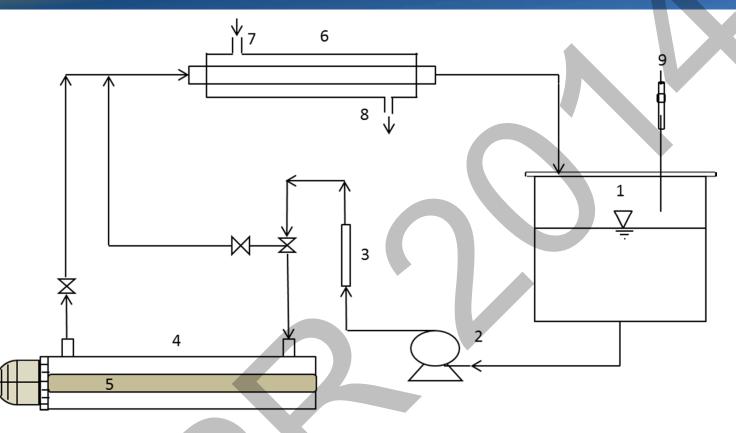
Objectives Experimental Setup Results and Discussion Concluding Remarks

Advanced Oxidation Process (AOPs)

Powerful technologies to transform organic contaminants into water and carbon dioxide

- ☐ Formation of hydroxyl radicals (strong oxidants)
- □ Reaction of these radicals with polymers soluble in water

Objectives

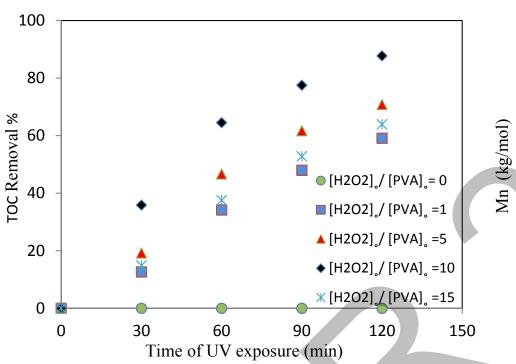

Introduction Objectives Experimental Setup Results and Discussion Concluding Remarks

- PVA degradation by batch and fed-batch advanced oxidation (UV/H₂O₂) process
- > Investigate the effects of H_2O_2 feeding strategy on polymer degradation

rate

Experimental Photoreactor Setup

Introduction Objectives Experimental Setup Results and Discussion Concluding Remarks

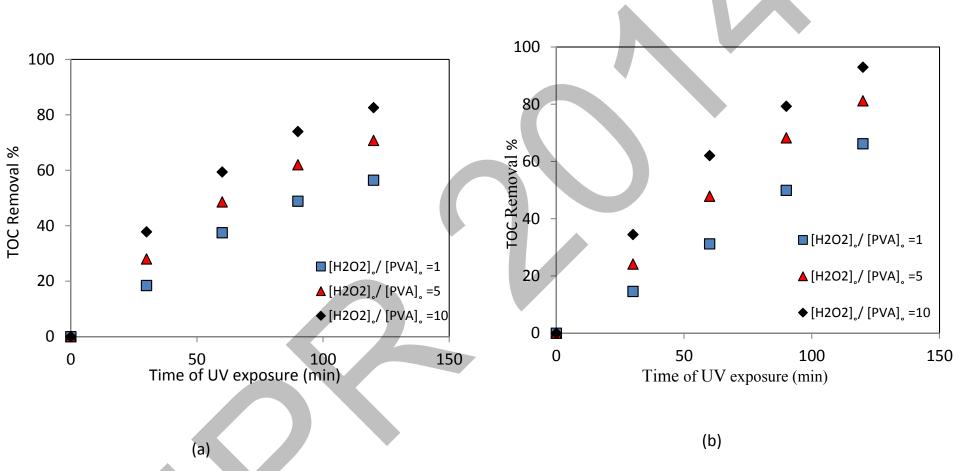


Schematic diagram of the laboratory scale batch and fed-batch system

Reservoir and collection tank, 2. Centrifugal pump, 3. Flow meter, 4. Annular photoreactor,
 UV-C lamp, 6. Heat exchanger, 7.Cooling water inlet, 8. Cooling water outlet, 9. Syringe for H₂O₂ injection

Introduction Objectives Experimental Setup Results and Discussion Concluding Remarks

Results and Discussion



The effect of H_2O_2 dosage on the TOC removal during fed-batch UV/ H_2O_2 process, $[PVA]_o = 500 \text{ mg/L}$, $[H_2O_2]_o/$ $[PVA]_o$ mass ratio of 0,1,5,10, 15, H_2O_2 dripped into the system in stepwise manner 140 □[H2O2]_/[PVA]_=1 120 ▲[H2O2]_o/[PVA]_o=5 ◆[H2O2]./[PVA].=10 100 80 60 40 20 0 30 60 120 90 150 0 Time of UV exposure (min)

Molecular weight variation during fed-batch UV/H_2O_2 process, $[PVA]_o = 500 \text{ mg/L}$, $[H_2O_2]_o/[PVA]_o$ mass ratio of 1,5,10, H_2O_2 dripped into the system in stepwise manner

Results and Discussion

Introduction Objectives Experimental Setup Results and Discussion Concluding Remarks

The effect of H_2O_2 feeding strategy on the TOC removal during batch and fed-batch UV/H_2O_2 process, $[PVA]_o = 50 \text{ mg/L}$, $[H_2O_2]_o/[PVA]_o$ mass ratio of 1,5,10. (a) one shot of H_2O_2 poured at the beginning of the experiment (b) H_2O_2 dripped into the system in stepwise manner

80 300 4th 3rd 2nd 70 ■ [H2O2] / [PVA] =1:1 1st 1st H₂O₂ dose 250 Á 60 2nd H₂O₂ dose ▲ [H2O2] / [PVA] =5:1 200 3rd H₂O₂ dose [H₂O₂]₀ (mg/L) 50 [H₂O₂]_o (mg/L) 4th H₂O₂ dose 150 40 30 100 20 50 ▲ 10 0 Ň 30 60 120 0 90 150 30 60 0 90 120 150 Time of UV exposure (min) Time of UV exposure (min) a) **b**)

H₂O₂ variation during batch and fed-batch UV/H₂O₂ process, [PVA]_o= 50 mg/L, [H₂O₂]_o/ [PVA]_o mass ratio of 1,5.
(a) one shot of H₂O₂ poured at the beginning of the experiment
(b) H₂O₂ dripped into the system in stepwise manner

Introduction Objectives Experimental Setup Results and Discussion Concluding Remarks

Concluding Remarks

- > It is technically feasible to degrade PVA in aqueous solution by UV $/H_2O_2$ process.
- For aqueous solution of 500mg/L PVA (Mn=130,000 g/mol), H₂O₂/PVA mass ratio of 10, 87 % TOC removal was achieved. Accordingly, 91% decrease in the number average molecular weight.
- ➢ H₂O₂ feeding strategy has a great effect on polymer degradation and TOC removal.
- 92% TOC removal of 50mg/L PVA solution for dripping H₂O₂ compared to 83% TOC removal for dumping one single shot.

Acknowledgements

- Supervisors: Dr. Ramdhane Dhib and Dr. Mehrab Mehrvar.
- Chemical Engineering Department, Ryerson University
- Natural Science and Engineering Research Council of Canada (NSERC)

Thank You.