Characterizing the Dimensions and Dynamics of Pyrene Labeled Macromolecules in Solution

Janine Thoma Prof. Jean Duhamel May 2018

UNIVERSITY OF WATERLOO

Outline

- Introduction
 - Dendrimers and their applications
 - Pyrene Excimer Fluorescence
- Dendritic Constructs
- Results
- Conclusions and Future Work
- Acknowledgments

Introduction

• Polymers with complex architecture can be separated into 4 categories. These topologies include:

Star Hyperbranched/ Dendritic

Brush/ Comb

Networks/ Gels

Dendrimer Applications

(1)

Encapsulation of metal nanoparticles for catalytic reactions

A- Covalent bondB- Cleavable bondC- Non-covalently internal

D)Non-covalently external E) + F) Associated dendrimer

(1) Trindell, J. A.; Clausmeyer, J.; Crooks, R. M. Size Stability and H₂/CO Selectivity for Au Nanoparticles during Electrocatalytic CO2 Reduction. *J. Am. Chem. Soc.* 2017, *139*, 16161-16167.
(2) Caminade, A.M.; Turrin, C.O.; Dendrimers for drug delivery. *J. Mater. Chem. B.* 2014, *2*, 4055-4066

Fluorescence

Pyrene was chosen because of its interesting characteristics:

- High molar extinction coefficient
- High quantum yield
- Excimer formation *

M* = Excited pyrene
M = Ground state pyrene monomer
(MM)*= Pyrene excimer
<k> = average rate constant of excimer formation

Steady-State (SS) Fluorescence

SS fluorescence measures the intensity of the monomer and excimer emission.

The monomer emission produces several fluorescence peaks between 375 nm and 410 nm.

Excimer emission produces a broad structureless emission which is centered around 480 nm.

Time Resolved (TR) Fluorescence

Monomer and excimer excited at 344 nm.

Fluorescence of monomer monitored as a function of time at 375 nm. Immediate decay of the monomer is seen.

Fluorescence of excimer monitored as a function of time at 510 nm. Rise time is seen because of the time required for an excited pyrene to encounter a ground state pyrene.

$$\langle k \rangle = k_{diff} \times [Py]_{loc}$$

Bis(hydroxymethyl)propionic acid dendrimers

Synthesized by Prof. A. Adronov and S. A. McNelles from Department of Chemistry and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Canada⁸

Bis(hydroxymethyl)propionic acid dendrimers

Synthesized by Prof. A. Adronov and S. A. McNelles from Department of Chemistry and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Canada

Bis(hydroxymethyl)propionic acid dendrons

 $Py_{64}G(6)$ -spacer

Synthesized by Prof. A. Adronov and S. A. McNelles from Department of Chemistry and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Canada

Determining $<L_{Py}^2>$ - Average of the squared end-toend distance separating every two pyrene labels

Example Calculation for G3

$$\frac{\left|L_{Py}\right|^{2}}{l^{2}} = \frac{(2a+1)+2(2a+1+b)+4(2a+1+2b)}{7}$$
$$\frac{\left\langle L_{Py}\right\rangle}{l^{2}} = \frac{2a+1+4a+2+2b+8a+4+8b}{7}$$

 $\left\langle L_{Py}^{2} \right\rangle = n \times l^{2} \qquad \frac{\left\langle L_{Py}^{2} \right\rangle}{l^{2}} = \frac{14a + 10b + 7}{7} \longrightarrow \frac{\left\langle L_{Py}^{2} \right\rangle}{l^{2}} = 1 + 2a + \frac{10b}{7}$ $\frac{\left\langle L_{Py}^{2} \right\rangle}{l^{2}} = n$

 $\left\langle L_{Py}^{2} \right\rangle = n \times l^{2}$

Determining $< L_{Py}^2 >$

$$< L_{Py}^{2} > = l^{2} \left(1 + 2a + b \frac{N \times 2^{N} - 2^{N+1} + 2}{2^{N} - 1} \right)$$

$$< L_{Py}^{2} > = l^{2} \left(1 + 2a + b \frac{258}{63} + c \frac{112}{63} \right)$$
$$< L_{Py}^{2} > = l^{2} \left(1 + 2a + b \frac{258}{64} + c \frac{112}{64} + \frac{(a + 2.5b + c + d)}{64} \right)$$
13

Calculated $< L_{Pv}^2 > 1/2$

Generation	# of GS pyrenes	$< L_{Py}^{2} > 1/2 (Å)$	
1	1	4.5	
2	3	5.4	
3	7	6.2	
4	15	7.0	
5	31	7.7	
6	63	8.5	
6-spacer	63	11.3	
6-spacer	64	11.2	

McNelles, S. A.; Thoma, J. L.; Adronov, A.; Duhamel, J. Quantitative Characterization of the Molecular Dimensions of Flexible Dendritic Macromolecules in Solution by Pyrene Excimer Fluorescence. *Macromolecules* **2018**, *51*, 1586-1590.

McNelles, S. A.; Thoma, J. L.; Adronov, A.; Duhamel, J. Quantitative Characterization of the Molecular Dimensions of Flexible Dendritic Macromolecules in Solution by Pyrene Excimer Fluorescence. *Macromolecules* **2018**, *51*, 1586-1590.

Can this be applied to PBBs?

A polymeric bottle brush (PBB) is a highly branched macromolecule with a high degree of polymerization and high grafting density.

Pyrene labeled poly(EG₅MA)

Pyrene Content (x)	M _n (g/mol)	M _w (g/mol)	PDI	DP
0.013	92000	140000	1.6	290
0.027	62000	93000	1.5	190
0.047	62500	96500	1.6	200
0.060	37000	55500	1.5	120
0.11	45000	75000	1.7	140

Time Resolved Fluorescence Results in THF

 $N_{\text{blob}} = 39 \pm 7$

N_{blob}- The number of monomer units within a blob

 $k_{\text{blob}} \times N_{\text{blob}}$ - provides a quantitative measure of the rate constant of pyrene excimer formation 19

Hyperchem

Hyperchem Results

Hyperchem blob- $20 \times 2 + 1 = 41$

Hyperchem Results

Hyperchem blob- $20 \times 2 + 1 = 41$

What is $< L_{Py}^2 > 1/2$ for a blob?

$$L_{Py}^{2} \rangle = l^{2} \times (2a + 1 + b(\frac{n+1}{2}))$$

Let a = 18 and b=2

From
$$N_{blob} = 39$$
 we know $n = 19$

$$\left\langle L_{Py}^{2} \right\rangle^{\frac{1}{2}} = 9.4 \text{ Å}$$

 $< k > = k_{diff} \times [Py]_{loc}$

Results in THF

24

Conclusions

- $<L_{Py}^2>^{1/2}$ was calculated for a series of dendrimers.
- Addition of a spacer reduces the fraction of aggregated pyrene.
- A calibration curve was constructed which relates the dimensions of a dendrimer with the dynamics of its terminal ends.
- Poly(EG₅MA) has a rigid backbone in solution.

Future Work

- Synthesize a pyrene labeled poly(MMA) using the EG_5 as the pyrene linker.
- Synthesize copolymers with 3, 8, and 12 EG units in the side chain

Acknowledgements

I would like to thank

- Jean Duhamel
- Stuart McNelles and Alex Adronov
- Everyone in the Duhamel lab
- NSERC

