Polyethylene Clay Nanocomposites: Modeling and Experimental Investigation of Particle Morphology

Abolfazl Maneshi May 2007

Outline

- Introduction
- Results
 - Modeling
 - Experimental
- Conclusions

Layered Silicate Nanocomposites

 Shape: Platelet, Size: 1nm thick, 75-150 nm across, Charge: unit cell 0.5-0.75 charge, 92 meq/100g clay, Surface Area: >750 m²/g, High Modulus: ~170 GPa, Particle: robust under shear, not abrasive

Polymer/Clay Nanocomposites in Brief

Scientific facts

- High aspect ratio nanofiller
- High modulus nanofiller
- Composite theory; torturous path theory

Main applications

- Reinforcement
- Barrier
- Synergistic flame retardant
- Etc.

Basic requirements of using organoclay in nanocomposites

- Compatibility
- Thermal stability

http://www.shu.ac.uk/research/meri/pcas/composites/composites.html

Preparation of <u>Polyolefin-</u>Clay Nanocomposites

Common Preparation Methods

Melt Mixing

In-Situ Polymerization Method

Metallocene Catalyst

Polymer- clay compatibilization

Polyolefin – clay compatibility

- Needed in processing & production
- Needed for final properties

exfoliation

1. Polymer compatibilization

Addition of functional groups
 into the polymer chains

Clay surface treatment

- Increased gallery spacing for catalyst supporting
 - Stabilized surface for catalyst supporting
 - Compatibility to monomer & solvent in polymerization system

Experimental

• Effect of montmorillonite surface treatment

- Best treatment selection

Concerns in "In-Situ" Method for Polyolefins

1. Clay surface compatibility

- Catalyst precursors
- Monomer

2. Intercalation/exfoliation quality

- Extent of intercalation/exfoliation
- Uniformity

3. Catalytic activity

- Supporting decreases the catalyst activity
- Supporting efficiency depends on the surface characteristics
- Some organic treatments might kill the catalyst

4. Good polymer properties

- Molecular weight distribution
- Melting temperature

5. Product shape (particle fragmentation)

Powder sizing & bulk density

Effect of Montmorillonite Treatment

Supporting & Polymerization in glass reactor

Characterization

Catalyst Supporting on the Cloisite Surface

Screening Results

Clay Sample	Sedimentation Rate	Activity	Polymerization Time (min)	Yield (g)
Cloisite Na ⁺	Quick (< 2 hr)	Yes	20	1.87
Cloisite 10A	Very slow (no precipitation)	N/A	20	-
Cloisite 15A	Very slow (no precipitation)	N/A	20	-
Cloisite 20A	Slow (>24 hr)	N/A	20	-
Cloisite 25A	Moderate(<8hr)	Very small	20	-
Cloisite 30B	Quick (< 2 hr)	Very small (or none)	40	-
Cloisite 93A	Slow (<12 hr)	Good	40	3.14g

High Pressure Comparison

Polymerization conditions for screening different supports in slurry phase

Catalyst/Clay ratio	TMA (m mole / g clay)	Et	thylene Pressur	•e]	Гетр	oerature	Polymerizatio Time
20 micromole metal/gram of clay	6	5 bars			85 °C		1 hrs
Results Cloisite 93 A ha meet prim	Sample	No of Runs (g/ g clay/ ł		verage nal Yield clay/ hr)			
phase		Na ⁺	3		3.52		
 High Activity of Catalyst supported on Cloisite 93A 			93A	3		7	/8.34

Low Activity Of Catalyst
 Supported on Na+ Cloisite

Na⁺ Cloisite

Figure 11- SEM microscopy of PE/Cloisite Na+, - 2, 500X

Figure 12- SEM microscopy of PE/Cloisite Na+, - 10, 000 X

High Activity Cloisite 93

Figure 5- SEM microscopy of PE/Cloisite93, -7,000 X

Figure 6- SEM microscopy of PE/Cloisite93, - 15, 000 X

Comparison: Cloisite vs kaolinite

Kaolinite

- 1:1 layer structure
- Very low surface charge

Cloisite

- 2:1 layer structure
- High surface charge

Kaolinite Microstructure

Morphology compared to Kaolinite's

Leaf-like Morphology

Interesting Characteristics Cloisite/Metallocene Polymerization System

- Relatively High Activity
 - Positive Effect of Clay Surface treatment on the Polymerization
 Catalyst Activity
- Excellent clay dispersion into polymer matrix down to 0.5 Wt% Clay
- Generally acceptable and controllable powder morphology
- No MAO
 - TMA used to make in-situ MAO

Benefits of In-situ MAO

- Adsorption water does not have to be removed before supporting
 - Eliminates clay calcination step that might destroy organic modifiers on the clay surface
- MAO does not have to be added to the support or reactor
 - Excess MAO leads to active site removal and two phase polymerization
 - Decreased chance of exfoliation
 - Reactor fouling
- Higher supporting efficiency
 - TMA is smaller than MAO and diffuses better to active the catalyst sites
 - In MAO, the TMA fraction is in charge of catalyst alkylation
- Reduced cost
 - MAO is expensive
 - One of the biggest disadvantages of metallocene catalysts is high level MAO needed for acceptable activities

Mathematical Model

Conclusions

- We developed a polymerization system that does not require MAO with the following main features:
 - Cloisite 93 A has uses an organic modifier that leads to the best catalyst loading and polymerization activity
 - Clays with lower interlayer spacing produced rigid polymer microparticles
 - Clays with interlayer spacing available produced polymer particles with leaf-like, flaky morphology
 - The layered structures are evident even in clay loading as low as 0.5 Wt%

Thank You!