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Introduction

o Complex Polymerizations:o Complex Polymerizations:
• Some sort of experimental information available from industrial 

l l b kor exploratory laboratory work

• Mathematical models usually do exist, albeit with unreliable 

and/or highly correlated parameters

Ideas from model-based design of experiments 
applied as early as possible beneficial for 
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clarification of polymerization kinetics
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Standard Experimental Designs

o Elegant and efficient g

o Commonly used in industrial research and development   

o However…

Solutions known 
to experts but 

practicing scientist

Limitations encountered in standard designs

Available resources don’t match number of trials

practicing scientist 
or engineer cannot 
handle them and 
may give up on 

Available resources don t match number of trials

Handling of impractical treatment combinations

Handling of situations with missing observations

use of statistical 
designs altogether

Factor levels change in the middle of experimentation

Factors with several (or combinations of) levels

Dropping/adding factorsDropping/adding factors

Incorporation of prior knowledge

I i i i f ti
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Ignoring prior information = 
waste of time, material, and 
other experimental resources
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Bayesian Design of Experiments

o Using a more efficient experimental design which can accommodate g p g

previous restrictions can lead to optimal performance in fewer trials, thus 

saving time and moneysaving time and money

o Family of Bayesian design approacheso Family of Bayesian design approaches

• Accommodate practical limitations encountered in standard designs

• Incorporate prior knowledge into the design to suggest a set of future 

experiments in an optimal, sequential and iterative fashion

• Allow use of a nonlinear model along with experimental information (an 

optimal model-based design of experiments)
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Bayesian Design of Experiments (Cont’d)

o Bayesian methodology well established, especially among statisticiansy gy , p y g

o Based on Bayes’ theorem

o Classical applications: early 1960s

)(× |∝) | θP)y( θLy( θP
posterior distribution of θ likelihood function of θ prior distribution of θ

o Classical applications: early 1960s

o Recent applications relevant to chemical and process engineering 

( i il d i h ( l i) i i i )(primarily concerned with (multi)parameter estimation questions):

• Catalytic systems; pharmaceutical kinetics; drug and cell transport

o Bayesian design of experiments has not been exploited in complex 

polymerization systems, which could benefit tremendously from its 

5
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important traits
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Research Objectives

o Apply ideas from design of experiments (applied statistical 
methodology) to :

• Verify/clarify polymerization kinetics

• Identify optimal operating conditions to achieve certain polymer properties 

• Refine values of key kinetic parameters of related process models

o To illustrate capabilities and benefits of Bayesian design approach 
case studies drawn from a representative complex polymerization 
process are presented 
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Controlled Radical Polymerization (CRP)

o Synthesis of polymers with controlled / well-defined structure 

for specialty applicationsp y pp

o Currently most popular approaches to CRP:y p p pp

• Nitroxide-Mediated Radical Polymerization (NMRP)

• Atom Transfer Radical Polymerization (ATRP)

R ibl Additi F t ti T f (RAFT)• Reversible Addition-Fragmentation Transfer (RAFT)
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Implementation of Bayesian Design in NMRP (Why?)

o Literature on NMRP extensive, but conflicting observations

o Many mechanistic claims, based on few data points over a 
typical 50 hr polymerization period; replication non-existent

o Modeling efforts sporadic and very “case-specific”

o Design of experiments and systematic, concerted efforts 
l kilacking
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Bayesian Analysis

o As in any typical modeling scenario process response(s) related too As in any typical modeling scenario, process response(s) related to 
process settings via a set of parameters in the presence of error

o Distribution function for prior knowledge

ε)θ,(y += ∗Xf

o Distribution function for prior knowledge

]U;α[N:θ∗

y : n X 1 vector of observations

]U;α[N:θ

X : n X p matrix of process information 
n : number of trials                                     p : number of parameters 
θ٭ : p X 1 vector of parameters                  ε : n X 1 vector of errors; N (0, Iσ2)
α : p X 1 vector of parameter means

9

α : p X 1 vector of parameter means        
U : p X p variance/covariance matrix of parameter means
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Bayesian Analysis (Cont’d)

o Bayes’ theorem gives the posterior (updated) distribution of θ٭:o Bayes  theorem gives the posterior (updated) distribution of θ :

]yX)σ
1(αU[]XX)σ

1(U[θ̂ 2
11

2
1 ′+′+= −−−

σσ

1
2

1 ]XX)σ
1(U[U −− ′+=

o Design problem: choose the “best” n-trial fraction of a full factorial 

i texperiment

o Design criterion: select experiments to maximize

XX)1(UH 2
1 ′+= −
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Design Four Optimal Experiments: Bimolecular NMRP

o Choose design factors and their levelso Choose design factors and their levels

Factors Level (Low) Level (High)

T (°C ) 120 °C 130 °CT ( C ) 120 C 130 C

[I]0 (M) 0.036 0.072

[N]0 (M) 0.058 0.082

o Single response: batch time at 75% conversion

o Incorporation of prior knowledgeo Incorporation of prior knowledge

• To generate the prior : 23 conventional factorial design was simulated with a  

l h i ti d l d l d f bi l l NMRPgeneral mechanistic model developed for bimolecular NMRP

• For simplicity, linear regression on the data : vector of parameter means (α )
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• “Brainstorming” on the maximum/minimum value of the parameters: variance (U)
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Sequential approach
Single 4-trial
Fractional Factorial

Two sequences of 2-trials each 

o First sequence of a 2-trial o Second sequence of 2-trials using q
experiment

q g
updated U

2 2

1

Trial 2
Trial 1

1

Trial 2
Trial 1

0
T [I] [N]

0
T [I] [N]

-1

[ ] [ ]

-1

T [I] [N]

-2 -2
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• Level of T is changing between trials in each sequence
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Single 4-trial
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Single 4-trial experiment
• Single 4-trial experiment • Two sequences of 2-trials each

2
Trial 1
Trial 2
Trial 3
T i l 4

H = 4.065
2

Trial 1
Trial 2
Trial 3
Trial 4

H = 4.026

0

1 Trial 4

0

1

1

0
T [I] [N]

-1

0
T [I] [N]

-2

-1

-2

-1

o Sequential approach offers more flexibility (e.g., changing the level of factors, 

2 2
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adding/dropping factors, etc.) 
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Sequential approach
Single 4-trial
Fractional Factorial

Comparison with Fractional Factorial

o Comparing H-values, all • Half fraction of 23 full factorial p g

experiments designed through 

Bayesian approach superior to ones 

• Half-fraction of 23 full factorial
2

Trial 1
Trial 2
Trial 3

H = 3.7

designed through conventional 

fractional factorials
1

Trial 3
Trial 4

o If experimenter is more interested 

i ff t f l b t f f t

0
T [I] [N]

in effect of only a subset of factors, 

changing the level of all factors at 

the same time is s perfl o s

-1

the same time is superfluous 

o Fractional factorial: resolution III
-2
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Bayesian approach: no confounding

IP
R 20

10



E d F t R

Introduction
Statistical Designs

Results
Conclusions

Case Study 1
Case Study 2
Case Study 3

Expand Factor Range

o Not permitted in conventional factorial designs

o Example: change temperature levels to 110 (-) and 140 °C (+)o Example: change temperature levels to 110 ( ) and 140 C (+) 

in the second sequence in order to expand the factor range 

• Demonstrate another advantage of the Bayesian design: flexibility to 

change factor levels in the middle of experimentation

o Coding for the first sequence revised

T [I] [N]
-0.33 1 -1 

    0.33 1 -1 
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Expand Factor Range (Cont’d)
2

Trial 1

1

Trial 1
Trial 2
Trial 3
Trial 4

0

0.33

1

0
T [I] [N]- 0.33

-1

o Change in coding of the temperature levels after the first sequence, resulted in 
temperature attaining more than two levels (“exposed” more process information; 

-2
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p g ( p p ;
leads naturally to studying nonlinearities!)
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o Choose design factors and their levels

Design Three Optimal Runs: Unimolecular NMRP

o Choose design factors and their levels

Factors Level (Low) Level (High)

T (°C ) 120 °C 140 °CT (°C ) 120 °C 140 °C

[I] (M) 0.03 0.05

Mn[I] ٭ (g/mol) 2200 6200

o Different response now: number average molecular weight at 
Mn[I]: number average molecular weight for the unimolecular initiator٭ 

50% conversion

o To generate the prior : 23 conventional factorial design with the 
following model:                                  

o Scenario: 2 trials were designed; can afford extra run

MWsty
[I]

[M][M]
Mn

0

to ×
−

=

17

o Scenario: 2 trials were designed; can afford extra run
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Analysis of Results
o Illustration of 3 runs suggested by Bayesian design

2
Trial 1
Trial 2
One trial-second seq

1

q

0
T [I] Mn(I)

-1

o Statistical diagnostic tests to quantify relative importance of parameters and

-2
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g q y p p
quality of prior knowledge
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A l i f R lt (C t’d)

Effect αi θi Test 1 Test 2 Test 3

Analysis of Results (Cont’d)

Effect αi θi Test 1 Test 2 Test 3

Mean 9213 10576 3.68 18. 96 0.0044

T -98 -112 -0.87 -1.01 -0.0011

[I] 2686 2909 5 97 8 00 0 0017[I] -2686 -2909 -5. 97 -8.00 -0.0017

Mn[I] -730 -222 -1.46 -0.58 0.0034

T*[I] 30 30 2.02 2.02 0.0002

T * Mn[I] 11 22 0.09 0.18 0.0007

[I] *Mn[I] -3 13 -0.02 0.09 0.0007

T * [I]* Mn[I] -0.25 11.17 -0.003 0.15 0.0020

o Test 1: Initiator concentration, [I], and interaction between temperature and 
initiator (T*[I]) are influential factors on molecular weight 

o Test 2 verifies the actual significance of an effect; in agreement with expert’s 
opinion

o Test 3 implies that expert’s opinion is valid; the model used seems reliable 
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p p p ;
o 12 runs (literature) vs. ONLY 3 (Bayesian)!!
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Concluding Remarks

o Bayesian approacho Bayesian approach

• Improvement in information content retrieved from data compared to 

conventional designs (case study 1)

• Flexibility to change levels of factors with relative ease (case study 2)Flexibility to change levels of factors with relative ease (case study 2)

• Flexible  and “cost”- effective with respect to the number of 

experiments (case study 3)

• Incorporation of prior knowledge into the design (all case studies)p f p g g ( )

• Inherent sequential nature of the design method with any number of 

20

runs (case studies 1 and 3)

IP
R 20

10



C l di R k (C t’d)

Introduction
Statistical Designs

Results
Conclusions

Concluding Remarks
Acknowledgements

Concluding Remarks (Cont’d)

Overview of Issues handled in my researchOverview of Issues handled in my research
Sources of prior knowledge (screening experiments  vs. models)

Eff t f i f ti i f ti iEffect of informative vs. non-informative priors

Accommodating factor level and range changes and/or extra trial(s) 
mid-way through experimentationy g p

Designing n-trial experiments vs. sequences of fewer trials

Diagnostic criteria for the quality of prior knowledge and significance of estimated 
effects

Single vs. multi-response scenarios

Handling process constraints and impractical treatment combinationsHandling process constraints and impractical treatment combinations

Reduction in overall number of experiments

I f i f i fl ibili d ff i

21

Increase of information content, flexibility and cost effectiveness
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Controlled Radical Polymerization
Incentive of Research
Objectives

Typical Features

o First order kinetic plot o Narrow molecular weighto First order kinetic plot o Narrow molecular weight 
distribution; low polydispersity

living 
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M
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A: regular radical polymerizationFRP 
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B: Anionic polymerization
C: Controlled radical polymerization
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Description Step

Chemical initiation 2dk
inI R⎯ ⎯→ •  

Nitroxyl ether decomposition 2⎯⎯⎯→

←⎯⎯ • + •
ka

E ikNO R NO
2

← +
dE in xkNO R NO

Mayo dimerization dim+ ⎯ ⎯ →kM M D  

Thermal initiation i+ ⎯⎯→ •+ •akM D D M  

sm
 

02
)

First propagation (primary radicals) 
1• + ⎯⎯→ •pk

inR M R  

First propagation (monomeric radicals) 
1

pkM M R• + ⎯⎯→ •  

First propagation (dimeric radicals) 
1

pkD M R• + ⎯⎯→ •M
ec

ha
ni

s
et

 a
l.,

 2
00

1

Propagation 
1

pk
r rR M R +• + ⎯⎯→ •  

Dormant living exchange (monomeric alkoxyamine) ←⎯⎯

• + • ⎯⎯→
ka

dax xkM NO MNO  K
in

et
ic

 M
(B

on
ill

a 

Dormant living exchange (polymeric alkoxyamine) ←⎯⎯

• + • ⎯⎯→
ka

dar x r xkR NO R NO  

Alkoxyamine decomposition ⎯⎯⎯→ +decompk
x xMNO M HNO  

Rate enhancement reaction 3+ • ⎯⎯→ • +hk
x xD NO D HNO  

Termination by combination tck
r s r sR R P +• + • ⎯⎯→  

Termination by disproportionation tdk
r s r sR R P P• + • ⎯⎯→ +  
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Transfer to monomer fMk
r rR M P M• + ⎯⎯→ + •  

Transfer to dimer fDk
r rR D P D• + ⎯⎯→ + •  
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U M t i f C St d 1U Matrix for Case Study 1

0.01 0 0 0 0 0 0 0

0 0.25 0 0 0 0 0 0

0 0 0.0625 0 0 0 0 0

0 0 0 0.04431 0 0 0 0U =
0 0 0 0 0.003906 0 0 0

0 0 0 0 0 0.005625 0 0

0 0 0 0 0 0 0.0625 0

U  

0 0 0 0 0 0 0 0.015625
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Ch i th O ti l D iChoosing the Optimal Design

o Two approaches have been used:o Two approaches have been used:

• Monte Carlo approach: design a large number of different locally• Monte Carlo approach: design a large number of different locally 

optimal experiments

• Exhaustive search based on using Wegner’s theorem (provides an 

upper bound on the determinant of a matrix)
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P d f th B i D iProcedure for the Bayesian Design

Steps

1. Select the design factors and their levels; select responses

2 C t th i k l d i t t f i t2. Cast the prior knowledge into a vector of prior parameter
estimates and a prior variance/covariance matrix

3. Select the “best” experiments using a search algorithm

4 Analyze the experiments4. Analyze the experiments

5. Update the prior variance/covariance matrix (U) and vector
of parameter estimates (θ)

6 Given the new variance/covariance matrix, select the next6. Given the new variance/covariance matrix, select the next 
sequence of experiments. Analyze the experiments and 
update θ and U, accordingly

7. Repeat step 6 until the final sequence; select the last 
f “ ti l” i t ft th l i f thsequence of “optimal” experiments; after the analysis of the 

experiments, update the vector of the parameters, for the last 
time
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St ti ti l T tStatistical Tests

o Test 1: measures uncertainty of the “expert”; ratio of prior means to prior standardo Test 1: measures uncertainty of the expert ; ratio of prior means to prior standard 
deviations of the means [αi/(Ui)1/2] and tests the null hypothesis that αi = 0 purely 
in the opinion of the ‘‘expert’’ 

o Test 2: measures the actual significance of an effect; the last updated estimate of 
effect divided by square root of diagonal element of the last posterior 
variance/covariance matrixvariance/covariance matrix 

o Test 3: measures the quality of expert’s opinion; equal to (   - αi) divided by the 
t f th di l l t f th l t t i i / i t isquare root of the diagonal element of the last posterior variance/covariance matrix 

iθ
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Future Steps

U f ll li d l i B i d io Use fully non-linear models in Bayesian design

o Combine Bayesian methodology with statistical criteria too Combine Bayesian methodology with statistical criteria to 
reduce parameter correlation (focus on parameter values)

o Apply full Bayesian scheme to other polymerization processes 
with uncertain models/parameters, especially in industrialwith uncertain models/parameters, especially in industrial 
settings (examples: Emulsion copolymerization of NBR/SBR 
rubber; NMRP in supercritical carbon dioxide etc )rubber; NMRP in supercritical carbon dioxide, etc.)

32
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Most Common CriteriaMost Common Criteria

o D-optimality: minimizes the determinant of the variance–covariance matrix 
o E-optimality: minimizes the largest eigenvalue of the variance–covariance matrix 
o A-optimality: minimizes the trace of the variance–covariance matrix

33
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C it i f C l ti R d tiCriteria for Correlation Reduction 

Criterion Objective

A Reduce the correlation between the parameters by minimizing all or some of the p y g
correlation coefficients

B Reducing the correlation between the parameters as in criterion A, subject to an 
acceptable level of information content for the experiments (measured through p p ( g
one or more of the eigenvalues of the variance/covariance matrix; as in E-optimal 
design)

C Maximize the information content of the experiment (as in E-optimal design), 
subject to an acceptable al e of correlation bet een indi id al parameter pairssubject to an acceptable value of correlation between individual parameter pairs

D Reduce the correlation between the parameters as in criterion A, subject to
acceptable values of the variances of specified parameters (targeted experiments)
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E l i C l i ti f NBR/SBREmulsion Copolymerization of NBR/SBR

o Both complicated and largely unstudiedo Both complicated and largely unstudied

o Parameter uncertainties and conflicting statements in the limited literature with 
respect to factor effects

o Detailed model in our group (Washington) : good starting point for the Bayesian 
scheme

o Due to a long-term contract, access to industrial (pilot-plant and plant) data

o What are we planning to do?

• Conduct the initial very important brain-storming phase

• Guide a design of experiments to take place at the company site (pilot-plant scale), in order to 

generate further experimental data
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Multi-Component Polymerization with Depropagation at Elevated p y p p g
Temperature

o All the equilibrium constants unknown

o Industrial interest; running experiments at high temperatures including 

acrylates and methacrylates: depropagation important

o Mathematical model developed in our group with depropagation : Leameno Mathematical model developed in our group with depropagation : Leamen  

and Jung

o Data available from Leamen that can be used as “prior knowledge” in theo Data available from Leamen that can be used as prior knowledge  in the 
Bayesian design
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NMRP i S iti l CONMRP in Supercritical CO2

o Emerging technology; green solvent; heterogeneous systemo Emerging technology; green solvent; heterogeneous system

o Luxury of interacting with a group from UNAM University (Prof. 

Vivaldo-Lima) which has been working on using supercritical carbon 

dioxide in CRP systems

• Waterloo providing the suggestion of new experimental regions

• UNAM conducting the experiments and corroborating with model predictions

o Additional data: Prof. Tzoganakis’s group in our department
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NMRP i th P f C li kiNMRP in the Presence of Cross-linking

o Having both controlled behaviour and cross-linking characterization;o Having both controlled behaviour and cross-linking characterization; 
potential for producing homogeneous networks

D t il d th ti l d l f NMRP l i ti f t do Detailed mathematical model for NMRP copolymerization of styrene and 
divynyl benzene being developed by Ortiz et al. (UNAM, Mexico)

o Preliminary experimental results are available from Tuinman et al. and 
Ximenes
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