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Introduction

o Complex Polymerizations:

Some sort of experimental informati@vailable from industrial

or exploratory laboratory work

Mathematical models usuaﬁ}gdst, albeit with unreliable

and/or highly correlated parameters

<

Ideas from model-based design of experiments
applied as early as possible beneficial for
clarification of polymerization kinetics




Statistical Designs  Factorial Designs

I Stindard ERPEIMGta! Designs
o Elegant and efficient

o Commonly used in industrial research and deyelopment

o However...

Limitations encountered in standaxd designs

Available resources don’t match numbef of trials

Handling of impractical te€atment combinations

Handling of situationgsWith migsing observations

Factor levels change intthe'middle of experimentation

Factors with several (or combinations of) levels

Dropping/adding factors

Incorporation of prior knowledge ~~_

Solutions known
to experts but
practicing scientist
or engineer cannot
handle them and
may give up on
use of statistical
designs altogether

Ignoring prior information =
waste of time, material, and

other experimental resources



Statistical Designs
Bayesian Design
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o Using a more efficient experimental design which can accommodate

previous restrictions can lead to optimal pgeformance in fewer trials, thus

saving time and money \
o Family of Bayesian design approg;b
Accommodate practical tions encountered in standard designs

Incorporate prior kncN ¢ into the design to suggest a set of future

experiments in an optimal, sequential and iterative fashion

Allow use of a nonlinear model along with experimental information (an

optimal model-based design of experiments)



Statistical Designs
Bayesian Design

o Bayesian methodology well established, especially among statisticians

o Based on Bayes’ theorem

P (0 ]y) o« L (0 ]y (9)
posterior distribution of 0 likelihood fu prior distribution of 0

o Classical applications: early 19%

o Recent applications rele emical and process engineering

(primarily concerned (multi)parameter estimation questions):

Catalytic systems; pharmaceutical kinetics; drug and cell transport

o Bayesian design of experiments has not been exploited in complex

polymerization systems, which could benefit tremendously from its

important traits




Introduction  Objectives

o Apply ideas from design of experiments (applied statistical

methodology) to : Q
Verify/clarify polymerization kineticg\
Identify optimal operating conditions to achieve certain polymer properties

Refine values of key kineti @ a1 eters of related process models

‘\

o To illustrate capablh?&éz d benefits of Bayesian design approach
case studies drawn from a representative complex polymerization

process are presented




Introduction
Controlled Radical Polymerization

o Synthesis of polymers with controlled / well-defined structure

for specialty applications Q

o Currently most popular aper; to CRP:
Nitroxide-Mediated Ra Q‘Umerlzatlon (NMRP)

Atom Transfer Radic lymerization (ATRP)

‘\

Reversible Addition-Fragmentation Transfer (RAFT)




Introduction

Research Incentives

(Why?)

Literature on NMRP extensive, but conﬂ1ct1ng observations

Many mechanistic claims, base Q W data points over a

typical 50 hr polymerization@’l/ replication non-existent

Modeling efforts spo and very “case-specific”

Design of experim% and systematic, concerted efforts

lacking




Statistical Designs
Bayesian Design

o As in any typical modeling scenario, process response(s) related to

[

process settings via a set of parameters Qe presence of error

y=1 (X, e@\

o Distribution function for prior ledge

\Qg‘a U]

y : n X 1 vector of observations

X : n X p matrix of process information

n : number of trials p : number of parameters

0" : p X 1 vector of parameters € :n X 1 vector of errors; N (0, I6?)
o : p X 1 vector of parameter means

U : p X p variance/covariance matrix of parameter means




Statistical Designs
Bayesian Design

o Bayes’ theorem gives the posterior (updated) distribution of 0™

0= [U” +(%2)xz];[\§® (Y )Xy

U™ X'X]™

[

0 Design problem: choose th " n-trial fraction of a full factorial

experiment \Q

o Design criterion: select experiments to maximize




Case Study 1
Results

0o Choose design factors and their levels

Factors | Level (Low) Leve@
T(°C) 120 °C &

[1], (M) 0.036 0.
[N], (M) 0.05% 0.082

o Single response: batch ti 75% conversion

o Incorporation of pri(\leedge

To generate the prior : 2° conventional factorial design was simulated with a

general mechanistic model developed for bimolecular NMRP
For simplicity, linear regression on the data : vector of parameter means (a.)

“Brainstorming” on the maximum/minimum value of the parameters: variance (U)
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Case Study 1 Sequential approach
Results

>
o First sequence of a 2-trial o Second sequence of 2-trials using
experiment updated U
2 2
—-o—Trial 2 —@ Trial 2
- Trial 1 Q = Trial 1
1- ® % < 3 @l o]
0 0
T [ T [1] [N]
1- 1
L9 2

* Level of T 1s changing between trials in each sequence




Case Study 1

Results Single 4-trial
_ >
 Single 4-trial experiment « Two sequences of 2-trials each

’ : ——Trial 1

—=—Trial 1 _ rna H=4026

-@Q-- Tr|a| 2 H 4.065 - - .

—&— Trial 3 i
1| —< Trial 4 w » 1 N

\
\ K4

-1 -

m \ [N] T [1] [N]
/‘/' \
/ \S !

o Sequential approach offers more flexibility (e.g., changing the level of factors,

adding/dropping factors, etc.)




Case Study 1
Results
Fractional Factorial

‘\

e Half-fraction of 23 full factorial

o Comparing H-values, all

—Trial 1
-® -Trial 2
4 Trnal 3
—>&— Trial 4

experiments designed through

H=3.7

K n approach superior to ones

esigned through conventional

(L:ractional factorials

in effect of only a subset of factors,

Q‘ o If experimenter is more interested

changing the level of all factors at

the same time 1s superfluous

o Fractional factorial: resolution III

Bayesian approach: no confounding




Results Case Study 2

4
s

o Not permitted in conventional factorial designs

‘\

o Example: change temperature leveN%O (-) and 140 °C (+)

in the second sequence 1n ord‘iL?xpand the factor range
€O

Demonstrate another advantag

¢ Bayesian design: flexibility to




Results Case Study 2

——Trial 1
-® Trial 2
4 Trial 3
—>x— Trial 4

/
/

-2

/ %
/ [1] [N]
/
/
/
AN ‘ i_l

K

Change in coding of the temperature levels after the first sequence, resulted in
temperature attaining more than two levels (“exposed” more process information;

leads naturally to studying nonlinearities!)
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Results
Case Study 3

[ B&ign ThigORlimal Runs: Unimolecular NMRP

Choose design factors and their levels

Factors Level (Low) Le%gh)
T(°C) 120 °C '\g

[I] (M) 0.03 .05
M, [1] * (g/mol) 6200
*Mn[I]: number average cular t for the unimolecular initiator
Different response er average molecular weight at

50% conversion \

To generate the prior : 2° conventional factorial design with the

following model: an[M]"[I;[M]t «MWisty

0

Scenario: 2 trials were designed; can afford extra run
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Results

Case Study 3

o Illustration of 3 runs suggested by Bayesian design

2
= al 1
NS
e tflal-second seq
1- o

T [ “.Mn(Q)

-2

o Statistical diagnostic tests to quantify relative importance of parameters and

quality of prior knowledge




Results
Case Study 3

iRlysis of RIS (Conc)

Effect ai 0i Test 1 Test 2 Test 3
Mean 9213 10576 3.68 18. 96 0.0044

T -98 -112 -0.87 =1.01 -0.0011

1] -2686 -2909 -5.97 -8.00 -0.0017

M, [I] =730 -222 -1.46 -0.58 0.0034
T*[I] 30 30 2.02 2.02 0.0002
T*M,[I] 11 22 0.09 0.18 0.0007
[1] *Mn([I] -3 13 0.02 0.09 0.0007
T*[I]*M[] | -0.25 1107 -0.003 0.15 0.0020

o Test 1: Initiator concentratien, [I], and interaction between temperature and
initiator (T*[I]) are influential factors on molecular weight

o Test 2 verifies the actual significance of an effect; in agreement with expert’s
opinion

o Test 3 implies that expert’s opinion is valid; the model used seems reliable
0 12 runs (literature) vs. ONLY 3 (Bayesian)!!
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Concluding Remarks
Conclusions

o Bayesian approach

Improvement in information content @Ved from data compared to

conventional designs (case stud

Flexibility to change levels o%ors with relative ease (case study 2)

Flexible and “cost” tive with respect to the number of

experiments (case\ 3)

Incorporation of prior knowledge into the design (all case studies)

Inherent sequential nature of the design method with any number of

runs (case studies 1 and 3)



Concluding Remarks
Conclusions

[ GGhc uding REMAkS (Convd)

Overview of Issues handled in my research

Sources of prior knowledge (screening expeniments vs. models)

Effect of informative vs. non<nformative priors

Accommodating factor level anducange ¢hanges and/or extra trial(s)

mid-way through experimentation

Designing n-trial experiments vs. sequences of fewer trials

Diagnostic criteria for thegquality of prior knowledge and significance of estimated
effects

Single vs. multi-response scenarios

Handling process constraints and impractical treatment combinations

Reduction in overall number of experiments

Increase of information content, flexibility and cost effectiveness
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o First order kinetic plot

o Linear increase of MW wit

In([M] o/[M])

M

n

A

termination

slow initiation

Introduction  Controlled Radical Polymerization

>

o Narrow molecular weight
distribution; low polydispersity

living
state

Gy

>

FRP

time

Intensity (arbit

\ Retention Volume (mL)

A: regular radical polymerization
B: Anionic polymerization
C: Controlled radical polymerization

>

conversion




Chemical initiation

Nitroxyl ether decomposition

Mayo dimerization

Thermal initiation

First propagation (primary radicals)
First propagation (monomeric radical
First propagation (dimeric radicals)

Propagation

Kinetic Mechanism
(Bonilla et al., 2002)

Alkoxyamine decomposition

Rate enhancement reaction
Termination by combination
Termination by disproportionation
Transfer to monomer

Transfer to dimer

Dormant living e omeric alkoxyamine)

Dormant livingiexc e (polymeric alkoxyamine)

| —“> 2R, e

3

IR

NO. —— Ri e+NO, o

M +M —f=y D
D—%+»De+Me

R,o+M—2R e

Me+M 23R o

De+M —2 >R e

R, e+M —< >R o

r

ka

M o+NOX o—)kd MNOX

K

o
R ¢+NO, e——>R NO,
MNO, —<=m_5 M + HNO,
D+NO, e—1>De+HNO,

R e+R e— 5P
R e+R e—*= 5P +P

Re+M—" 5P +Me

Re+D—2 P +De




4 01 0 0 0 o\g 0

0 0 0
0 0 0 0 0 0
0 0 0.0625 0 0 0 0

U= 0 0 0  0.04431 0 0 0
0 0 0 01003906 0 0 0
0 0 0 0 0.005625 0 0
0 0 0 0 0.0625 0
0 0

0 0 0 0 0.015625
g \ %)




o Two approaches have been used:

Monte Carlo approach: design a lar NQ@I‘ of different locally
optimal experiments (Lé

Exhaustive search bQ using Wegner’s theorem (provides an

upper bound on th rminant of a matrix)




Steps

. Select the design factors and their levels; %

prior parameter

. Cast the prior knowledge into a VeNﬂ
estimates and a prior variance/ cge trix

. Select the “best” experime arch algorithm

. Analyze the experiments

. Update the prior vg /covariance matrix (U) and vector
of parameter estim

AR

. Given the new nce/covariance matrix, select
sequence o otiments. Analyze the experiment
update 6 and Ujaccordingly

. Repeat step 6 until the final sequence; select the last
sequence of “optimal” experiments; after the analysis of the
experiments, update the vector of the parameters, for the last
time

[
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o Test 1: measures uncertainty of the “expert”; ratio of prior means to prior standard
deviations of the means [0i/(Ui)"?] and tests the null hypothesis that ai = 0 purely

in the opinion of the “‘expert’’ Q

o Test 2: measures the actual significance effect; the last updated estimate of
effect divided by square root of diago
variance/covariance matrix

o Test 3: measures the qualit gert’s opinion; equal to (- a1) divided by the
square root of the diagon\

nt of the last posterior

ent of the last posterior Variance/covari%)nce matrix




Future Steps
Conclusions
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o Use fully non-linear models in Bayesian design

o Combine Bayesian methodology wi@sﬁcal criteria to

reduce parameter correlation ( n parameter values)
o Apply full Bayesian sch other polymerization processes
with uncertain mode] ameters, especially in industrial

settings (examples: Enmulsion copolymerization of NBR/SBR

rubber; NMRP 1n supercritical carbon dioxide, etc.)
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o D-optimality: minimizes the determinant of the variance—covariance matrix
o E-optimality: minimizes the largest eigenvalue of the variance—covariance matrix

o A-optimality: minimizes the trace of the Variancﬁariance matrix

N

r'y
A-optimality "mgzgj
:\// ______
i E-optimality
0,

D-optimality

&
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Criterion Objecti

A Reduce the correlation between the paramet minimizing all or some of the
correlation coefficients

B Reducing the correlation betwiee @ameters as in criterion A, subject to an
acceptable level of information content for the experiments (measured through
one or more of the eig ues ofithe variance/covariance matrix; as in E-optimal
design)

C Maximize the i tion content of the experiment (as in E-optimal design),
subject to a able value of correlation between individual parameter pairs

D Reduce the correlation between the parameters as in criterion A, subject to
acceptable values of the variances of specified parameters (targeted experiments)

34
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Both complicated and largely unstudied
Parameter uncertainties and conflicting statemep:s in the limited literature with

respect to factor effects
Detailed model in our group (WashingQg%d starting point for the Bayesian

scheme %
Due to a long-term contract, aceess to idustrial (pilot-plant and plant) data

What are we planning to

Conduct the initial Very\ ant brain-storming phase

Guide a design of experiments to take place at the company site (pilot-plant scale), in order to

generate further experimental data
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o  All the equilibrium constants unknown
o  Industrial interest; running experiments t@ temperatures including
acrylates and methacrylates: depro;@io important

o  Mathematical model developed % group with depropagation : Leamen

and Jung

o Data available from @n ;at can be used as “prior knowledge” in the

Bayesian design
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Emerging technology; green solvent; heterogeneous system
Luxury of interacting with a group from L@ University (Prof.
Vivaldo-Lima) which has been worki using supercritical carbon

dioxide in CRP systems

Waterloo providing the sugg of new experimental regions

UNAM conducting the -@ '

Additional data: Prof.x

ents and corroborating with model predictions

oganakis’s group in our department
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Having both controlled behaviour and cross-linking characterization;
potential for producing homogeneous net\ﬁs
Detailed mathematical model for NMRP eopolymerization of styrene and

Q iz et al. (UNAM, Mexico)

divynyl benzene being developed.b

Preliminary experimental ts arc available from Tuinman et al. and

Ximenes Q






