

Propylene Polymerization using Ziegler-Natta Catalysts Mathematical Modeling, Polymerization Kinetics and Polymer Characterization Study

Institute for Polymer Research Symposium May 10, 2011 University of Waterloo Waterloo, Ontario

Ahmad Alshaiban and João B. P. Soares

Department of Chemical Engineering University of Waterloo Waterloo, Ontario, Canada

Outline

Background

- Polypropylene
- Ziegler-Natta Catalysts and Electron Donors

Results

- Modeling
- Polymerization Experiments: Kinetic
 - Reactor Setup
 - Estimation of Kinetic Constants
- Polymerization Experiments: Characterization
 Molecular Weight / GPC
 Tacticity / ¹³C NMR
 Crystallinity / CEF

Conclusions

Ziegler-Natta Catalyst

Background

Electron Donor Functionality

Active site models for MgCl₂·TiCl₄ (Kakugo *et al.*, 1988)

Isotacticity and MWD

•

Background

- Polypropylene tacticity and MWD have a significant effect on its properties.
 - Electron donors control polypropylene tacticity. Wt. fraction eluted, % Elution temperature, °C DIBP/TFPMDMS DIBP/CHMDMS (Chadwick et al, 2001) EB/PEEB DIBP/DCPDMS Diether

Modeling Results

Mathematical Modeling

Dynamic Solution Simulation

Modeling Results

A. Alshaiban and J. B. P. Soares, Macromol. Symp., 285, 8 (2009)

A. Alshaiban and J.B.P. Soares, Macromol. React. Eng., 5, 96 (2011)

Monte Carlo Simulations

Modeling Results

Polymerization Experiments

Polymerization Experiments

Polymerization Experiments

Polymerization Experiments

Kinetic

60°C Factor II IV I Al/Ti (mol/mol) 900 (± 7.1%) 900 (± 16%) 900 (± 7.7%) 900 (± 7.2%) Do/Ti (mol/mol) 1.5 (± 9.6%) $1.5 (\pm 7.1\%)$ 0 Η, (psi) 0 16 (± 10%) $16 (\pm 10\%)$ **Yield** (g-PP·g-cat⁻¹·min⁻¹) 7.6 (±15%) 6.1 (±15%) 17.3 (±2.5%) 8.4 (±6.5%) 0.04 60_I_36 60_I_37 0.03 60_I_40 R_p (mol/min) 0.02 0.01 0.00 10 15 5 20 25 30 35 0 Time (min)

*

Conclusion

Conclusion

Kinetic

- Developed a detailed mathematical model that describes propylene polymerization kinetics and polypropylene microstructure, taking in consideration the effect of external electron donors.^(*)
- Estimated the activation energies of activation, propagation, and deactivation of a commercial heterogeneous Ziegler Natta catalyst for propylene polymerization in order to be integrated with the commercial process simulator.

(*) A. Alshaiban and J. B. P. Soares, *Macromol. Symp.*, 285, 8 (2009)

A. Alshaiban and J.B.P. Soares, *Macromol. React. Eng.*, **5**, 96 (2011)

GPC Analysis

Polymerization Experiments

Characterization

	60°C						
Parameter	І (D, —)	 (-, -)	III (D, H)	<mark>IV</mark> (—, Н)			
$\boldsymbol{M_n}$ (g·mol ⁻¹)	30.1 x 10 ³	22.5 x 10 ³	18 x 10 ³	19 x 10 ³			
<i>M</i> _w (g·mol⁻¹)	151.6 x 10 ³	140.3 x 10 ³	82.9 x 10 ³	77.3 x 10 ³			
PDI	5.0	6.2	4.6	4.1			
Number of site types (n)	5	5	5	5			
	70°C						
Parameter	І (D, —)	Ⅱ (—, —)	<mark>Ш</mark> (D, H)	Ⅳ (—, H)			
<i>M_n</i> (g·mol ^{−1})	84.1 x 10 ³	13.7 x 10 ³	27.5 x 10 ³	9.4 x 10 ³			
<i>M</i> _w (g·mol⁻¹)	499.4 x 10 ³	72.5 x 10 ³	95.5 x 10 ³	32.6 x 10 ³			
PDI	5.9	5.3	3.5	3.5			
Number of site types (n)	5	5	4	4			

^{L3} C N	MR Analys	is				Polymerization Experiments
						Characterization
Seq.#		Range (d)*	І (D, —)	II (-, -)	Ш (D, H)	IV (—, H)
1	тттт	22.0 - 21.7	83.78	61.25	93.77	76.46
2	mmmr	21.7 - 21.4	3.73	9.51	3.06	6.73
3	rmmr	21.4 - 21.2	0.53	1.87	0.00	0.00
4	mmrr	21.2 - 21.0	4.17	7.76	2.48	4.96
5	mmrm + rmrr	21.0 - 20-7	2.01	6.38	0.00	4.60
6	rmrm	20.7 - 20.5	0.00	1.67	0.00	0.00
7	rrrr	20.5 - 20.25	2.90	3.55	0.00	2.61
8	rrrm	20.25 - 20.0	1.67	5.18	0.00	2.29
9	mrrm	20.0 - 19.7	1.21	2.82	0.69	2.35
Range of	d reported et al.(2001) 95 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30	95,50 T 83.78 T	61.25 63.00	98.90 93.77	78.48 74.85	
	50 -	I (D, -)	∎ (−, −)	■ (D, H)	N (-, H)	1

- A. Alshaiban, 2008, MASc. Thesis, University of Waterloo
- A. Alshaiban and J. B. P. Soares, *Macromol. Symp.*, **285**, 8 (2009)
- A. Alshaiban and J.B.P. Soares, Macromol. React. Eng., 5, 96 (2011)

Conclusion

- Conclusion
- Conducted a systematic polymerization kinetics and microstructural studies for polypropylene produced using 4th generation ZN catalyst and compared the hydrogen effect with the simulation results obtained from the developed mathematical model.
- Adding Do increases M_n; and at Do presence, M_n increases with T as in groups I (D,-) & III (D,H).
- M_n decreases with H₂ at the same T as we go from II (-, -) to IV(-, H) and from I (D,-) to III (D,H)
- > Number of site types decreased by one at high T in the presence of H_2 .
- > No significant change in pentad assignments with T except for group I (Do, -)
- Introducing H₂ tends to increase the tacticity [I (D,−) →III (D,H)] and [II (−, −) →IV (−, H)] which is in agreement with our simulation of the developed mathematical model.
- Group III (D, H) shows the highest crystallization peak temperature.
- > Crystallinity increases with T in the presence of Do, I (D,-) & III (D,H).

A. Alshaiban and J. B. P. Soares, *Macromol. Symp.*, **285**, 8 (2009) A. Alshaiban and J. B. P. Soares, *Macromol. Symp.*, **Accepted** A. Alshaiban and J. B. P. Soares, *Macromol. React. Eng.*, **5**, 96 (2011)

