

Active Site Identification and Mathematical Modeling of Polypropylene Made with Ziegler-Natta Catalysts

By:

Ahmad Alshaiban

Supervised By:

Prof. João B.P. Soares

Institute for Polymer Research, Department of Chemical Engineering University of Waterloo

OUTLINE

- OBJECTIVES
- **INTRODUCTION**
 - Saudi Basic Industries Corporation "SABIC"
 - Polypropylene Facts & Figures
 - Polypropylene Structure
- MODEL & RESULTS
 - Population Balance and Method of Moments:
 - Model
 - *** Results:**
 - > Steady State vs. Dynamic CSTR's Solutions
 - Monte Carlo Approach:
 - * Model
 - ✤ Results

CURRENT & FUTURE WORK

CONCLUSION

OBJECTIVES

- Develop mathematical models for the steady-state and dynamic simulation of propylene polymerization with Ziegler-Natta catalysts in industrial reactors using different modeling approaches: population balances and method of moments and the Monte Carlo techniques
- Describe, for the first time, site transformation by electron donors, with a mathematical model and quantify its effect on polymer chain microstructure

INTRODUCTION

- SABIC is the world's fourth largest producer of polyolefins. It is the world's third largest producer of polyethylene and the fifth largest producer of polypropylene.
- Overall polypropylene demand is forecasted to grow globally at a rate of 5.8% in 2004-2009 timeframe

INTRODUCTION

Z-N Multiple Site Catalyst

Steady State Solution for One Site Type: $R_{PI}/R_{P2} = 1$, $R_{PI}/R_{T1} = 1364$, $R_{P2}/R_{T2} = 1364$

Effect of Changing the Electron Donor Concentration 1/2

M_n (g/mol)	57,000	57,000	57,000
M_w (g/mol)	114,000	114,000	114,000 10
PDI	2.00	2.00	2.00

Steady State Solution for One Site Type: $R_{PI}/R_{P2} = 1$, $R_{PI}/R_{T1} = 1364$, $R_{P2}/R_{T2} = 1364$

Effect of Changing the Electron Donor Concentration 2/2

M_n (g/mol)	57,000	57,000	57,000
M_w (g/mol)	114,000	114,000	114,000 11
PDI	2.00	2.00	2.00

Block's Properties and Their Weight Distribution

i = Block #

Steady State Solution for One Site Type

Effect of Changing the Donor Type

Steady State Solution for One Site Type

Effect of Changing the Hydrogen Concentration

	$R_{PI}/R_{TI} = 1364$, $R_{P2}/R_{T2} = 1364$	$R_{PI}/R_{TI} = 682$, $R_{P2}/R_{T2} = 682$	$R_{PI}/R_{TI} = 2727$, $R_{P2}/R_{T2} = 2727$
M _n g/mol	57,000	29,000	114,000
M _w g/mol	114,000	58,000	228,000 14
PDI	2.00	2.00	2.00

Multiple Sites

Steady State Simulation Results

Summary Results for a 4-Site Model of Propylene Polymerization

Site	Overall	1	2	3	4
	Mass %	Mass %	Mass %	Mass %	Mass %
Pure Isotactic	98.22%	100 %	100 %	93.40%	86.47%
Pure Atactic	0.30%	0.0 %	0.0 %	2.84%	0.88%
Stereo-Blocks	1.48%	0.0 %	0.0 %	3.76%	12.64%
Block weight %:	Single-	state stereospecific site	s	Two-state sit	tes
1 block	97.98%	100 %	100 %	96.24%	87.35%
2 blocks	1.44%	0.0 %	0.0 %	3.24%	7.89%
3 blocks	0.52%	0.0 %	0.0 %	0.50%	4.25%
4 blocks	0.04%	0.0 %	0.0 %	0.01%	0.35%
5 blocks	0.01%	0.0 %	0.0 %	0.00%	0.14%
6 blocks	0.00%	0.0 %	0.0 %	0.00%	0.01%
M_n (g/mol)	52,081	62,957	167,316	7,902	191,523
M_w (g/mol)	231,513	125,890	334,595	16,013	398,055
PDI	4.45	2.00	2.00	2.03	2.08
R_{Pl}/R_{P2}				2.50	6.67
R_{PI}/R_{TI}		1500	4000	194	5000
R_{P2}/R_{T2}		0	0	97	1071 16

Dynamic Solution Simulation

Effect of Donor, Hydrogen, & Monomer Concentrations on Molecular Weight

Dynamic Solution Simulation

Molecular Weights by Block Number

Multiple Sites

Dynamic Simulation Results

Dynamic Solution Simulation for a 4-Site Model Molecular Weight & Polydispersity Index

Monte Carlo Simulation

Can have the whole distribution

Monte Carlo Approach

CURRENT & FUTURE WORK

- Add additional features to the Monte Carlo code such as number of defects per chain and end group determination
- Use the microstructural information obtained by simulation to predict polypropylene fractionation with the temperature rising elution fractionation (TREF) and the nuclear magnetic resonance (¹³C NMR)
- Plan for the parameter estimation for some known commercial catalyst / donor systems.

CONCLUSION

- The model is able to predict the polypropylene properties taking in consideration site transformation in the presence of the electron donor.
- The model is able to predict the tacticity during propylene polymerization which could enhance and used as a tool for the process control.
- The model will be used for parameter estimation for some commercial catalyst /electron donor systems.
- The microstructural information obtained by simulation can be used to predict polypropylene fractionation with the temperature rising elution fractionation (TREF).

THE END

THANK YOU

Steady State vs. Dynamic Solution Simulations

Mass %		Steady State	Dynamic	Error %
Pure Isotactic		86.73%	86.68%	-0.1%
Pure Atactic		6.07%	6.10%	0.5%
Stereo-Blocks		7.20%	7.22%	0.2%
By Block %:				
	1 block	92.81%	92.81%	0.0%
	2 blocks	6.00%	6.00%	0.0%
	3 blocks	1.13%	1.13%	0.0%
	4 blocks	0.05%	0.05%	0.0%
	5 blocks	0.01%	0.01%	0.0%
	6 blocks	0.00%	0.00%	0.0%
M_n (g/mol)		57,270	57,270	0.00%
M_w (g/mol)		114,497	114,500	0.00%
PDI		2.00	2.00	0.00%

Steady State vs. Dynamic Solution Simulations

Steady State					Dynamic			Error %		
i	Mn	Mw	PD	Mn	Mw	PD	Mn	Mw	PD	
1	55,246	110,695	2.00	55,245	110,690	2.00	0.00%	0.00%	0.00%	
2	102,229	153,807	1.50	102,230	153,810	1.50	0.00%	0.00%	0.00%	
3	157,432	210,382	1.34	157,430	210,380	1.34	0.00%	0.00%	0.00%	
4	204,416	256,004	1.25	204,420	256,010	1.25	0.00%	0.00%	0.00%	
5	259,619	312,037	1.20	259,620	312,040	1.20	0.00%	0.00%	0.00%	
6	306,603	358,194	1.17	306,610	358,200	1.17	0.00%	0.00%	0.00%	

	Steady State			Dynamic			Error %		
	Mn	Mw	PD	Mn	Mw	PD	Mn	Mw	PD
Iso-Segments	56,008	111,939	2.00	56,002	111,960	2.00	0.01%	-0.02%	-0.03%
Ata-Segments	46,274	92,507	2.00	46,271	92,500	2.00	0.01%	0.01%	0.00%
Total Segments	55,058	110,377	2.00	55,112	110,470	2.00	-0.10%	-0.08%	0.01%