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Research on metallic nanoparticles has recently experienced much growth because of their 

unique physical properties and their multiple applications including imaging,1-2 chemotherapy1,  

sensing, biology, medicine,2 and drug delivery.3 The synthesis of nanoparticles with well-defined 

characteristics (e.g. composition, nanomorphology, size, size uniformity) is usually necessary to 

achieve the desired physical properties. Different methods have been investigated to prepare 

stable metallic nanoparticles with designed characteristics. This includes surfactants,4   self-

assembled block copolymer micelles,5,6  star block copolymers,7 and unimolecular micelle-like 

compounds.8,9  

Arborescent copolymers, an unusual type of graft copolymers with a dendritic 

architecture, were also investigated as templates. Specifically, arborescent polystyrene-graft-

[poly(2-vinylpyridine)-block-polystyrene] copolymers have been applied to the preparation of 

gold nanoparticles in our laboratory. The synthetic strategy used for these arborescent 

copolymers was a grafting onto procedure, whereby the functionalization of a linear or branched 

polystyrene (PS) substrate with acetyl groups was followed by grafting with anionic “living” 

polystyrene-block-poly(2-vinylpyridine) chains. The resulting dendritic species had a covalently 

bonded, layered structure with an inner shell of poly(2-vinylpyridine) (P2VP) chains.10  

These unimolecular micelle architectures are much more stable as templates for loading 

polar compounds, such as metallic salts, than micelles formed by the self-assembly of linear 

block copolymers, since they have no critical micelle concentration. Aside from their inherent 

stability, arborescent polymer templates have the potential to offer other important advantages 

over other methods. For example, variations in the degree of polymerization of the side chain 



building blocks and the number of grafting cycles (generation) provide control over the 

characteristics of the templates (e.g., core size, chain mobility, stabilizing layer thickness) 

beyond what is achievable by the self-assembly of block copolymer chains.9 The manipulation of 

these nanostructures may be an advantageous for different applications. 

We now present a new method for the preparation of arborescent core-shell-corona 

structures, namely polystyrene-graft-poly(2-vinylpyridine)-graft-poly(acrylic acid)-block-

polystyrene, by the self-assembly of arborescent polystyrene-graft-poly(2-vinylpyridine) with 

poly(acrylic acid)-block-polystyrene via hydrogen bonding and electrostatic (weak acid-weak 

base) interactions as shown in Scheme 1. This methodology offers a simple but effective way to 

prepare the polymeric templates in nearly 100 % yield. It involves anionic grafting for the 

synthesis of the arborescent polystyrene-graft-poly(2-vinyl pyridine) substrates, atom transfer 

radical polymerization (ATRP) to synthesize the poly(acrylic acid)-block-polystyrene 

copolymer, and mixing of the two components, either in solution or in the solid state, in the 

appropriate ratio to prepare the core-shell-corona architectures.  

 

 

 

 

 

 

 

 

 

 

                   Interaction	between	P2VP	and	PAA		

	

	

Scheme1.	 Schematic	 representation	 of	 the	 self‐assembly	 of	 arborescent	 PS‐g‐P2VP	 with	

PAA‐b‐PS,	metal	loading,	and	reduction	to	obtain	metallic	nanoparticles. 
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The polymers synthesized were analysed by nuclear magnetic resonance (NMR) 

spectroscopy, gel permeation chromatography (GPC), dynamic light scattering (DLS), 

transmission electron microscopy (TEM), and atomic force microscopy (AFM). An increase in 

size is observed after the substrate was complexed with the block copolymers to yield self-

assembled structures with a single, narrow size population, and nanomorphologies were 

observed that were similar to the systems previously obtained in our laboratory by anionic block 

copolymer grafting. 

These complexes were successfully loaded with tetrachloroauric acid (HAuCl4), and 

subsequent reduction of the HAuCl4-loaded (G1PS-g-P2VP30K)-g-(PAA-b-PS) complex with 

sodium borohydride (NaBH4) yielded aggregation-free gold nanoparticles with a size ranging 

from 6 to 17 nm inside the polyion complexes.  

 
                                          

 

 

 

 

 

 

 
	
	
	
	
	
	
	
	
	
	
Figure 1 (a) AFM images showing the spherical morphology of G2PS-g-P2VP13K in THF, (b) 

AFM  image showing the raspberry-like morphology of G2PS-g-P2VP-g-(PAA10-b-PS260) in 

toluene, and (c) AFM and (d) TEM  images for the raspberry like morphology obtained for 

HAuCl4- loaded (G2PS-g-P2VP)-g-(PAA10-b-PS260) in toluene (the scale bars are 100 nm). 
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