

EFFECT OF PENDANT DISTRIBUTION ON THE DISPERSANCY

OF MALEATED EP COPOLYMERS

DSM I

Institute for Polymer Research, Department of Chemistry, University of Waterloo, Ontario N2L3G1

1. Introduction

Why are oil-additives so important?

Figure 1: Illustration of the detrimental effect of soot formation

Emission of Formation of Health Hazard carbon-rich soot Global Warming particles Engine Failure

Advantages of using oil-additives:

- . Improves the performance of the engine.
- . Increases fuel efficiency.
- . Prevents the negative impact on the environment

WITHOUT ADDITIVES WITH ADDITIVES Figure 2: Illustration of the advantage of using an oil additive

Mild dispersants are apolar polymers bearing polar pendants that stabilize colloidal particles suspended in the oil

Figure 4: Steric stabilization of carbon-rich particles in oil

2. Proposal

a) Clustered succinic anhydride (SAH) units Isolated succinic anhydride (SAH) units

c) Oligo(MAH

Figure 5: Chemical structures of the main products expected from a grafting reaction

a. Infrared Spectroscopy

ŝ

Figure 6:FT-IR spectra of a maleated EP copolymer in THF

b. UV-Vis

The level of clustering between the pyrene pendants by measuring the peak-tovalley ratio (P_A).

Figure 7: Spectrum of pyrene labeled EP in THF

c. Fluorescence Spectroscopy $f(t) = \sum A_{F_{-}} e^{-t/\tau i} + \sum A_{F_{+}} e^{-t/\tau i}$

Figure 8: Pyrene excimer fluorescence decays obtained for the Py-EPM polyr in THF. λex= 344 nm , λem= 510 nm.

Table 1: P_A and A_A/A_+ ratios for the pyrene labeled samples

Pyrene-labeled sample	P _A	A/A,	SAH Content µmol.g ⁻¹
Py-EPM-1	2.93 ± 0.023	- 0.84	193 ± 9
Py-EPM-2	2.89 ± 0.015	- 0.83	158 ± 11
Py-EPM-3	2.42 ± 0.012	- 0.21	171 ± 11

d. Langmuir Isotherm

1/Ceg (m³/g) Figure 9: Langmuir isotherm curve for adsorption of the dispersant

onto carbon black particles.

Table 2: I max and K for the dispersant samples

Sample	Гmax	К
EPM-1	$\begin{array}{l} 6.9\times10^{-3}(g/m^2)\\ 1.3~(\mu mol~of~NP_3D/m^2)\\ 5.3~g~of~disp/g~of~CB \end{array}$	$\begin{array}{l} 4.5 \times 10^{.5} \; (m^{3}/g) \\ 2.5 \times 10^{.7} \; (m^{3}/\mu mol \; of \; NP_{3}D) \end{array}$
EPM-3	$5.0 \times 10^{-5} (g/m^2)$ 0.1 (µmol of NP ₃ D/m ²) 0.04 g of disp/g of CB	$6.5\times10^{\text{-}3}~(\text{m}^{\text{3}}\text{/g})$ $3.6\times10^{\text{-}5}~(\text{m}^{\text{3}}\text{/}\text{\mu}\text{mol of NP}_{3}\text{D})$

4. Concluding remarks

- The level of clustering and the content of the SAH were successfully characterized for the three EPM samples.
 The content of SAH can be determined by FT-IR and UV-Vis
 The results show that EPM-1 and EPM-2 are randomly distributed bu EPM-3 is more clustered and will affect the binding of the dispersant
- onto the carbon black particles.