Ethylene-Acrylonitrile Copolymerization with Ni-Diimine/EASC/Clay Catalyst System

Sang-Young A. Shin, Joao B. P. Soares, Leonardo C. Simon

Department of Chemical Engineering University of Waterloo

Contents

- > Motivation
- Experimental Results
 - Part 1 : Ethylene/Acrylonitrile Copolymer with α -Dimine-[N,N] Nickel

Dichloride/EASC System

- Part 2: Ethylene In-Situ Polymerization with a Catalyst Supported on

Clay Modified with Acrylonitrile

- Conclusions
- Contributions and Acknowledgements

Motivation

- Searching for a new surface modifier of clays
- Developing high performance thermoplastic elastomers - Product with properties similar to Therban®

Introduction

Polymerization Conditions for Polar Comonomers

- Comonomer should have at least two methylene spacers between the olefin and polar functional groups
- Tolerance to polar groups (approximately 1500 equiv. per metal center) 3° Amines > Halides > Ethers > Ketenes > Esters > Water > Alcohols

Table 1. Amine Monomers Polymerized with Cp^{*}₂ZrMe₂ /Borate System

155

151

a. Activity = mol of monomer/mol of Zr.c[monomer].h

9

Activities

 $(h \cdot c[M])^{-1}$

Stehling, et al., Macromolecules., 1998, 31,2019

619

Part 1: Ethylene/Acrylonitrile Copolymer with α-Diimine-[N,N] Nickel Dichloride/EASC System

- Nitrile group of acrylonitrile can coordinate metal active center in Ethylene/Acrylonitrile copolymerization.
- Late transition metal catalysts are tolerant for polar comonomer.
- > Pretreatment acrylonitrile with alkyl aluminum.
- EASC as a co-catalyst for ethylene/acrylonitrile copolymerization.

Catalysts for Ethylene/Acrylonitrile Copolymer

 Ethylene and acrylate copolymer was reported by Pd-diimine catalyst system by Brookheart Group.

Johnson, L.K.; Mecking, S.; Brookhart, M. J. Am. Chem. Soc., 1996, 118, 267.

Copolymerization of Ethylene and Acrylonitrile

No.	М	С	[C] (mol/L)	Time (hr.)	Yield (g)	Mw (kg/mol)	PDI
1	C_2H_4	-	-		2.1	233	3.2
2	C_2H_4	C ₂ H ₃ CN	0.06	1	2.0	247	3.4
3	C_2H_4	C ₂ H ₃ CN	0.36	1	0.32	364	2.8
4	C_2H_4	C ₂ H ₃ CN	0.48	1	0.30	295	2.4
5	C_2H_4	C ₂ H ₃ CN	0.60	1	0.32	249	2.2
6	C_2H_4	C ₂ H ₃ CN	0.73	1	0.32	277	2.2

Catalyst :(diimine)NiCl₂/EASC system

M: monomer(ethylene); C: comonomer (acrylonitrile with tri-isobutilaluminum) Experimental conditions: solvent: 25 mL;

[**1**] = 4.25µmol/L, [Al]/[**1**] = 43, temperature = 25°C ;

P_{ethylene} = atmospheric.

All samples were dried in the oven at 80 °C for 24 hrs.

Functional Groups in Ethylene/Acrylonitrile Copolymer,

Xylene Soluble, Xylene Insoluble Fractions

(c) Xylene-soluble fraction

- Nitrile groups
- Attenuated vinyl groups

(b) Xylene-insoluble fraction

- Nitrile groups
- vinyl groups
- PAN structure
- (a) Ethylene/acrylonitrile copolymer
 - Nitrile groups

Figure 1. FT-IR spectra of ethylene/acrylonitrile copolymer sample 3

¹H, ¹³C NMR spectra ; Xylene insoluble part polymer after 24 hours extraction.

Transmission and ATR FT-IR spectra of Ethylene/Acrylonitrile Copolymer

* ATR : Attenuated total reflection infrared

Thermal Behavior of Ethylene/Acrylonitrile Copolymer

Thermal Behavior of Xylene Insoluble Fraction

(PAN Rich Part)

Figure 4-16. Proposed mechanism for cyclization and aromatization of nitrile and acid groups during thermal treatment of ethylene/acrylonitrile copolymers.

Materioo

13

Stress-Strain Curves of Ethylene/Acrylonitrile Copolymer

Conclusion

- > Successful synthesis of Ethylene/acrylonitrile copolymer.
- Presence of PAN structure was confirmed by - FT-IR, ¹H-NMR, ¹³C-NMR
- Nano-phase distribution of PAN domains in PE matrix was observed by
 - TEM
- > Improved physical properties were confirmed by
 - Tensile tests.

Part 2: Ethylene In-Situ Polymerization with a Catalyst Supported on Clay Modified with Acrylonitrile

Intercalation and exfoliation of clay with acrylonitrile.

In-situ copolymerization of ethylene and acrylonitrile on the clay surface.

Strong interfacial interaction between clay surface and PE matrices through introduction of chemical bonds.

Enhanced mechanical properties with PE-acrylonitrile/clay polymer composite.

Commercial Applications

Clay Nanocomposites

- > Timing belt covers of automotive engines
- Standard is glass fiber reinforced nylon or PP
- Injection molded nylon 6 nanocomposite used in Toyota's automotive engine parts
- Exhibited good rigidity and excellent thermal stability with a 25% weight reduction
- Step- assists on vans/ trucks
- Thermoplastic olefin (TPO) nanocomposite used on 2002 GM mid- size vans
- Nanocomposites are stiffer, lighter, less brittle in cold temperatures and more easily recyclable
- Cost the same as conventional TPOs, with no new tooling required

Morphology of Clays

In-Situ Polymerization of Ethylene and Clay

Modification of Clay with Acrylonitrile

Functional Groups in PE, PE-MMT/TIBA/AN, Clay Residue

Thermal Behavior of PE-MMT/TIBA/AN

Tensile Properties of PE-MMT/TIBA/AN Composite

Conclusions

- Excellent intercalation and exfoliation of clay particles with acrylonitrile monomer.
- Strong interfacial interaction between polyethylene matrices and clay surface.
- Developed a new synthetic method; in- situ copolymerization of ethylene and acrylonitrile.
- Enhanced mechanical properties in polyethylene-acrylonitrile clay composite.

Contributions

Scientific

- Synthesized ethylene-acrylonitrile copolymer.
- Introduced interfacial interaction between polyethylene matrices and clay surface with acrylonitrile modification.

Industry

- Developed a new synthetic method: in-situ copolymerization of ethylene and modified clay with bifunctional molecules.
- Society
 - Provided new knowledge for PE-Clay hybrid nanocomposites.

Acknowledgements

Thank you!

- Prof. Joao Soares and Prof. Leonardo Simon
- Financial support from – NSERC
- Collaborators

- Prof. Gunter Scholz (X-Ray and TEM)

Functional Groups in Ethylene/acrylonitrile Copolymer

¹H NMR spectrum of ethylene/acrylonitrile copolymer (No. 6 in Table 1.) 27

