Studying the Interactions of a Gemini Surfactant with DNA by Fluorescence

Christine Keyes Department of Chemistry University of Waterloo IPR 2010

Outline

Introduction

- Gemini surfactants in gene delivery
- Study the associations of a pyrene labeled gemini surfactant by fluorescence
 - With and without DNA
- Results
 - Global analysis fits of the fluorescence decays of the pyrene monomer and excimer
- Conclusions

Gene Delivery

Types of delivery vectors

 2 Classes: Viral and Non-Viral

Akhtar, S., Gene Therapy, 13, 2006, 739 – 740.

Gene Delivery Vectors

	VIRAL	NON-VIRAL
Advantages	Protects gene	Non-toxic, non
	against degradation	immunogenic
	High transfer	Not limited in the
	efficiency	size of gene they can
		encapsulate
		 Relatively cheap
Disadvantages	 Viral capsids have 	Low efficiency of
	the potential to	transfection
	generate severe	
	immune response	
	Limited in the size of	
	the gene they can	
	encapsulate	
o, X., Kim, K. Liu, D., The AAPS	Journal, 9, 2007 , 92 – 104.	

Wettig, S. D., Verrall, R. E., Foldvari, M., Current Gene Therapy, 8, 2008, 9 – 23.

Gemini Surfactants

Contain 2 head and 2 tail groups that are chemically linked Polar/lonic heads

Hydrophobic tails

Spacer

- Spacer: short or long methylene groups, rigid (stilbene), polar (polyether), and non polar (aliphatic, aromatic).
- Gemini surfactants can also be asymmetrical.

Pyrene Labeled Gemini Surfactant H₃C CH₃ H₃C CH_3 [Py-3-12] CH₂

- Gemini surfactant labeled with pyrene study the gemini surfatcant complexes with DNA in solution by fluorescnece
 - 1) Characterize the micellization without DNA
 - 2) Characterize the complexes with DNA
- Given to us by Dr. Shawn Wettig from the Dept. of Pharmacy at UW – CMC = 0.22 mM

Why Pyrene?

- Pyrene has many interesting photophysical properties
- Pyrene's ability to form an excimer (excited dimer)
- Used to study the association of pyrene-labeled macromolecules in aqueous solution

Pyrene Labeled Surfactant

Without DNA

Pyrene Labeled Surfactant

Based on AFM results

Wang, C., Li, X., Wettig, S. D., Badea, I., Foldvari, M., Verrall, R. E., Phys. Chem. Chem. Phys. 2007, 9, 1616 – 1628.

RESULTS

Micellization of Py-3-12 Without DNA

Absorbance Spectrum

[Py-3-12] = 0.02 mM

Steady State Fluorescence

Normalized @ 375 nm

Steady State Fluorescence

Time Resolved Fluorescence Decays

Time per Channel = 1.02 ns /channel \rightarrow equivalent to short decay time

Time Resolved Fluorescence

Time Resolved Fluorescence

Decays

A_/A_+ \rightarrow -1 excimer formed via diffusion A_/A_+ \rightarrow 0 ground state dimers

Excimer formation via diffusion

- Kinetics of monomer consumption and excimer formation are coupled
- Decay times in the monomer and excimer (rise time) are found to be the same when fit with a sum of exponentials
- Fit the monomer and excimer globally by ensuring some of the decay times are held the same in the monomer and excimer decays
- Increases the accuracy on the parameters retrieved from the fluorescence decays

- f_{free} fraction of free pyrene
- f_{diff} fraction pyrene that forms excimer via diffusion
- f_{E0} fraction of preassociated pyrenes that form excimer (proper stacking)
- f_D fraction of preassociated pyrenes that form long lived excimer (improper stacking)
- $f_{agg} = f_{E0} + f_D$

Siu, H., Duhamel, J., Macromolecules, 37, 2004, 9287 – 9289.

Global Analysis – Calculation of $(I_E/I_M)^{SPC}$

$$\begin{split} I_{M} &= \int_{0}^{\infty} [Py^{*}]_{t} dt = [Py]_{o} \left[f_{diff} \sum_{i=1}^{n} a_{i}\tau_{i} + f_{free}\tau_{M} \right] \\ I_{E} &= \int_{0}^{\infty} [E^{*}]_{t} dt \\ &= [Py]_{o} \left[-f_{diffE0} \sum_{i=1}^{n} a_{i} \frac{\frac{1}{\tau_{i}} - \frac{1}{\tau_{M}}}{\frac{1}{\tau_{i}} - \frac{1}{\tau_{E0}}} \tau_{i} + \left(f_{E0} + f_{diffE0} \sum_{i=1}^{n} a_{i} \frac{\frac{1}{\tau_{i}} - \frac{1}{\tau_{M}}}{\frac{1}{\tau_{i}} - \frac{1}{\tau_{E0}}} \right) \tau_{E0} \\ &- f_{diffD} \sum_{i=1}^{n} a_{i} \frac{\frac{1}{\tau_{i}} - \frac{1}{\tau_{M}}}{\frac{1}{\tau_{i}} - \frac{1}{\tau_{D}}} \tau_{i} + \left(f_{D} + f_{diffD} \sum_{i=1}^{n} a_{i} \frac{\frac{1}{\tau_{i}} - \frac{1}{\tau_{M}}}{\frac{1}{\tau_{i}} - \frac{1}{\tau_{D}}} \right) \tau_{D} \right] \end{split}$$

SPC trend scaled to SS trend

Complexation of Py-3-12 With DNA

Steady State Fluorescence

Steady State Fluorescence 7 **Equilibrium Values** 6 Increasing time 5 tensity 4 ^W|/³| 3 ^Eluorescel 2 1 2 0 350 450 550 1 *λ* (nm) 0 0.0 0.5 1.0 2.0 1.5 2.5 -/+ ratio Can we add enough DNA separate the surfactant molecules? $I_E/I_M \rightarrow 0?$

Steady State Fluorescence

Sheared Calf Thymus DNA – reduce viscosity at high -/+ ratios

SPC trend scaled to SS trend

