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(a)

Figure 1Figure 1. Modular configuration in a CSCO extruder. Modular configuration in a CSCO extruder
(b)
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REX d liREX modeling.

- Conservation of mass, momentum and energy equations as
well as the reaction kinetics equations need to be solved.

- One-dimensional (1D) and three-dimensional (3D) models can
b d i l hbe used to simulate the system.

- 1D models: geometrical and flow simplifications are used.
Th d l i ld l f i tThese models yield average values of processing parameters
along the extruder, from hopper to die.

3D models are less simplified than 1D models- 3D models are less simplified than 1D models.
Conventionally, only fully filled sections of the extruder are
simulated in 3D modeling.
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(a) (b)

[After Michaeli et al., 1995] [After Vergnes et al., 1998]

Figure 2. Simplified flow geometries used in 1D 
modeling. a) Curved channels. b) “C-shaped” chambers.
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S li l i Equations 2Scaling-up relations
- Variables are scaled-up by a 

power of the diameter ratio 
( l i d )

Equations 2. 
-Conventional scale-up 
approach for non-reactive 
systems(scale-up index). systems.
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where
D=Diameter, H=Max. channel depth
L=Screw length, φ=Helix angle,

2.a) Average residence time, 2.b) Mass 
throughput, 2.c) Specific Energy 
Consumption (SEC). 
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Fi 3 PP d d ti (b i h i )
[After Xantos, 1992]
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Proposed scale-up approachProposed scale up approach.
-To scale-up the REX operation from a reference extruder keeping 
a constant thermal time, tT.

A i i f h i d ’ d id i l

∫= −t tRTE
T dtet 0

)(/ '
' [3] [Nauman, 1977]

E=Activation energy of the reaction. T and t’ temperature and residence time along a 
pathline.

-Simulation software (Strutt, 1998). Kinetics and rheokinetics 
parameters from Tzoganakis et al. (1988) and Wang (1996).

Additionally, comparison between scaling-up under constant y, p g p
tT and SEC.

- The yielded Mws and PDIs, for scaling-up under the above 
procedures are the evaluation parameters
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Table 1 Material data used for simulationsTable 1. Material data used for simulations.
Parameter Value 

Number-average molecular weight 51,800 g/mol 

W i h l l i h 279 700 / lWeight-average molecular weight 279,700 g/mol

Melt density 750 kg/m3 

Solid density 905 kg/m3 

Bulk solid density 560 kg/m3Bulk solid density 560 kg/m

Pellet hydraulic diameter 2 mm 

*Power law index 0.35 

Consistency index 75480 Pa sn 

Temperature factor (β) 0.0243(1/ºC) 

Melt thermal conductivity 0.185 W/(m ºC) 

Melt specific heat capacity 2.428 kJ/(kg ºC) 

* This value is used for all of the calculations to evaluate the scale-up index v

Melting point 170 ºC

Heat of fusion 133.850 kJ/kg 
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Table 2. Summary of geometrical parameters of the  extruders
(data Leistritz®).

Extruder 
model 

Barrel 
diameter 

(mm) 

Channel 
depth 
(mm) 

d h v 

*LSM 30 34 34 00 3 99*LSM-30.34 34.00 3.99 --- --- ---

ZSE-50 50.00 7.21 1.47 1.52 2.02 

ZSE-67 67.00 8.05 1.98 1.03 0.11 

*Indicates the reference extruder.

ZSE-96 96.00 12.10 2.84 1.06 0.25 
 

It   can be noticed  from the values of h and v that the ZSE-67 and  ZSE-96 
extruders are close geometrically scaled-up versions of the reference device. 
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Start

Evaluate tT for the 
reference extruder ,tTf, and 

MRt is the mass throughput 
obtained assuming constant

f
MRt for the large extruder, Mi.

E l f hobtained assuming constant 
residence time.

The screw speed, N, is kept

Evaluate tT for the 
larger extruder, tTi.

constant during the 
calculations. tTf = tTi Mi=Mi±ΔMi

Yes

No

Fi 4 I l t d l d f t t

Stop

Yes
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Figure 4. Implemented scale-up procedure for constant tT.
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[After Strutt, 1998]

Fi 5 E t d fi ti f th LSM 30 34Figure 5. Extruder screw configuration for the LSM-30.34
extruder.
The peroxide injection port, IP, is located at a dimensionless axial distanceThe peroxide injection port, IP, is located at a dimensionless axial distance
equal to 0.45. 

For the larger extruders, the length of the screw elements and kneading 
blocks is scaled up proportionally to d1
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IP

R 20
08



Background Problem 
description Future workResults Conclusions

Table 3. Initially simulated processing conditions.

Extruder 
model 

Mass 
Throughput 

(kg/hr) 

Screw speed 
(rpm) 

Peroxide 
concentration 

(wt %) 
LSM 30 34 5 0 100 150 200 0 01 0 02 0 10LSM-30.34 5.0 100, 150, 200 0.01, 0.02, 0.10

ZSE-50  19.65 100, 150, 200 0.01, 0.02, 0.10 

ZSE-67 39.52 100, 150, 200 0.01, 0.02, 0.10 

ZSE-96 122.02 100, 150, 200 0.01, 0.02, 0.10 
 

The mass throughput for the larger extruders corresponds to the scaled-up value 
of this parameter from the equation of constant residence time.
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0 02 % 100 LSM 30.34 ref[I] = 0.02 wt% , N=100 rpm
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Figure 6. Degree-of-filling at the center of the screw

Dimensionless axial distance
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Figure 6. Degree of filling at the center of the screw 
channel (DOF). 

IP
R 20

08



Background Problem 
description Future workResults Conclusions

0 02 % 100 LSM 30 34 ref[I] = 0.02 wt% , N=100 rpm
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Figure 7. PDI variation along the axial distance of the
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Figure 7. PDI variation along the axial distance of the 
extruder.

IP
R 20

08



Background Problem 
description Future workResults Conclusions

tav(N=100)[I] = 0.02 wt%  

120
e 

(s
)

220

e 
( º

C
).

tav(N=100)
tav(N=150)
tav(N=200)

80

100

de
nc

e 
tim

212

216

ep
er

at
ur

e

Tav(N=100)
Tav(N=150)
Tav(N 200)

40

60

ra
ge

 r
es

i

204

208

ra
ge

 te
m

e Tav(N=200)

20

0.00 1.00 2.00 3.00 4.00 5.00

A
ve 200

A
ve

r

30
.3

4

E-
50

  

E-
67

E-
96

Figure 8. Temperature of reaction and residence time 

LS
M

-

ZS
E

ZS
E

ZS
E

6/4/2008 IPR Annual Symposium 16

g p
variations for the constant thermal time scale-up approach.

IP
R 20

08



Background Problem 
description Future workResults Conclusions

[I] = 0 02 wt% tav(Ni=100)[I] = 0.02 wt% 
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Figure 9. Temperature of reaction and residence time 
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Figure 11. Mw and PDI variations for both tT and SEC.
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Under the constant thermal time scale-up approach:

- Good agreement between the PDIs and Mws of the referenceg
and scale-up extruders are obtained.

- When the residence time decreases, the temperature of reactionW e t e es de ce t e dec eases, t e te pe atu e o eact o
increases.

- No significant variations of PDI and Mw as a function of theNo significant variations of PDI and Mw as a function of the
screw speed are observed.

Overall, the constant thermal time scale-up procedure is a
better way to scale-up the REX system than the constant SEC
approach
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3D simulations:

- To perform simulations for specific conditions selected from
1D simulations in order to get additional insight of the REXs u at o s o de to get add t o a s g t o t e
operation.

To perform a mixing and residence time distribution (RTD)- To perform a mixing and residence time distribution (RTD)
analysis.

- To calculate the average thermal time distribution, Mw, and
PDI and compare these results to those of the 1D analysis.
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(a) (b)

Figure 12. Sample 3D results. (a) Velocity field for a cut y-plane 
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(b) Shear rate contour plot for a cut z-plane.
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Figure 13. Sample 3D results. Particle tracking analysis.
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Figure A.1. General description of an extrusion operation.
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(a) (b)
[After Booy, 1978] [After Yang and Manas-Zloczower, 1992]

Figure A.2. a) Additional geometrical considerations for a twin 

tαπ

screw extruder system. b) Kneading block geometry

( )DC αcos= [A 2]
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Figure A.3. Temperature variation along the axial 
distance of the extruder.
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- Reaction kinetics for the peroxide-initiated degradation of PP

Scale-up calculations for reactive extrusion operations

Reaction kinetics for the peroxide initiated degradation of PP 
(Tzoganakis et al. 1988). Initiation, chain scission, transfer, 
thermal degradation, termination by disproportionation are the 
steps considered by the model.steps considered by the model.
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- I is the peroxide concentration; fp and kd, are the peroxide decomposition 
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efficiency and rate constant of decomposition, respectively. t is the time;  
and Qi is the ith moment of the molecular weight distribution.  Mn, Mw and 
Mz are the number-, weight- and z- average molecular weights, 
respectively; and m0 is the monomer molecular weight
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respectively; and m0 is the monomer molecular weight.
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- Equations A 6-A 9 needs to

Scale-up calculations for reactive extrusion operations

- Mw is a time dependent 
function; it depends on the 
evolution of the reaction (eq

- Equations A.6-A.9 needs to 
be declared in 
POLYFLOW® as “user 
d fi d f i ”evolution of the reaction (eq 

15).
defined functions”.

- The ith moment of the 
molecular weight distribution( )

__
[A 6] molecular weight distribution 

are calculated from relations 
proposed by Tzoganakis et al. 
(1988)

( )120 /QQmMW =

⎪
⎪

⎨

⎧ <
−

0

..

1
0

. , γγ
γ n

K

[A.6]

(1988).
- The power-law consistency 

index, K, and the power-law 
⎪
⎪

⎩

⎪
⎨

>
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− 0

..

1.

0

, γγ
γ

γ
η

n
K [A.7]

, , p
index, n, are expressed as 
polynomial functions (Strutt, 
1998)
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TMKK W=

),(
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(b)(a) (b)

Figure A.4. (a) Screws and (b) flow-field meshed 
t ti l bd i
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computational subdomains.
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3D simulations.

Scale-up calculations for reactive extrusion operations

- Simulation of the flow in conveying screw elements of a 
CSCO extruder.

- POLYFLOW®, a FEM software, is used; it applies the “mesh 
superposition technique” (Avalosse and Rubin, 2000). This 
technique is especially useful in describing the time q p y g
dependency of the flow, which is due to the rotation of the 
screws.
A ti P d t d t t ( t d t t f fi d- Assumptions: Pseudo-steady state (steady state for a fixed 
position of the screws). Newtonian and isothermal flow.

- Boundary conditions: Screw rotating speed=10 rpm. Gravity y g p p y
and inertia forces neglected. Non-slip conditions on solid 
boundaries.
M d l G li d N t i fl id Vi it 5 0E04 P
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- Model: Generalized Newtonian fluid. Viscosity=5.0E04 Pa·s
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Scale-up calculations for reactive extrusion operations

Table A.1 Peroxide half-lives in 
melt (sample results).
Ni=150 rpm. [I]=0.02 wt%

Table A.2 Peroxide half-
live time as a function of 
the temperature of reaction.Ni 150 rpm. [I] 0.02 wt% p

Extruder 
model

Constant
tT

Constant
SEC

Temperature
(oC) 

[I]1/2

(s)

LSM-30.34 3.25 ---

ZSE-50 3.33 2.23

180 74.00
190 36.30
200 18 35ZSE-67 3.80 3.68

ZSE-96 4.33 3.92

200 18.35

210 9.54
220 5 10

For the higher values of the average 
temperature of reaction, the lower 
values of this parameter are observed

220 5.10
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p
(in agreement with results of Fig. 8).
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