Rheology Under the Microscope: Tracking Changes of a Networked Associative Polymer Under Shear at the Molecular Level

> Howard Siu 30th Annual IPR Symposium University of Waterloo May 13th, 2008

Outline

- Associative polymers (APs)
- Pyrene labelled APs
- Fraction of aggregated pyrenes (f_{agg}) (Py-PDMA)
- Application to Py-HASE system
- Combined fluorometer/rheometer system
- Conclusions

Associative Polymers

 Water-soluble polymers with a small amount (<5 mol%) of hydrophobic pendants

In water, hydrophobes cluster to form aggregates

Associative Polymers

 Above C* (semi-dilute regime), intermolecular bridging creates a polymeric network that increases the solution viscosity

 Used in paints and coatings as colloidal stabilizers and viscosity modifiers

Rheology (Flow/Deformation) of AP Solutions

Important Parameters in Modeling Rheology of AP Solutions

Residence time of hydrophobes in aggregates

Average number of hydrophobes per aggregate
 (N_{agg})

• Overall level of association of hydrophobes in solution (f_{agg})

Defining the Network by N_{agg} and f_{agg}

• f_{agg} gives the fraction of hydrophobes in aggregates

- •Knowing f_{agg} and N_{agg} gives the # of junction points, thus the extent of network
- •For same f_{agg} having high N_{agg} values results in a less extended network

Thus, it is essential to know both f_{agg} and N_{agg} in order to characterize the network effectively

Determination of f_{agg} and N_{agg}

• N_{agg} can be determined for a pyrene labelled AP by
fluorescence quenching studies*

Recently *f_{agg}* parameter has been determined by fluorescence measurements for pyrene labelled APs**

■ N_{agg} has also been determined for a pyrene labelled AP from fluorescence, using f_{agg} and information obtained from the fluorescence blob model (FBM)**

*Siu, H.; Prazeres, T. J. V.; Duhamel, J.; Olesen, K.; Shay, G. *Macromolecules* **2005**, *38*, 2865.

**Siu, H.; Duhamel, J. Submitted to J. Phys. Chem. B, Manuscript # JP-2008-011059

Pyrene Fluorescence

Excimer Lifetime Decays

The Fluorescence Blob Model (FBM)

Blob = Volume probed by an excited pyrene can probe

<n>: Average number of pyrenes per blob

k_{blob}: Rate of encounter of excited pyrene with one ground-state pyrene

The fluorescence blob model is useful to model diffusional encounters of pyrene pendants attached to a polymer

Pyrene Species Present in Solution

 f_{agg} : Fraction of associated pyrene pendants in solution

 f_{diff} : Fraction of pyrenes forming excimer via diffusion (FBM)

 f_{free} : Fraction of pyrenes that never form excimer (e^{-t/τ_M})

Determination of Pyrene Fluorescence Fractions

By relating the curvature of the monomer decay to the rise time of the excimer decay, the fractions f_{agg} , f_{free} , and f_{diff} can be determined.

Siu, H.; Duhamel, J. Macromolecules (Technical Note) 2004, 37, 9287.

Ideal Case Scenario

Pyrene randomly labelled onto poly(*N*,*N*-dimethyl acrylamide) (PyPDMA)

Analysis of Fluorescence Decays

Monomer Decay

Excimer Decay

[Py-PDMA] = 0.09 g/L645 µmol pyrene/g polymer

Monomer

 $\lambda_{ex} = 340 \text{ nm}$

$$\lambda_{\rm em} = 375 \; \rm nm$$

Excimer $\lambda_{ex} = 340 \text{ nm}$ $\lambda_{em} = 510 \text{ nm}$

Py-PDMA Pyrene Fractions

Pyrene Content μmol/g	OD	[Py-PDMA] g/L	$ \begin{array}{c} & & \\ & & $	$\sum_{Py} f_{free}$	$\sum_{{}^{\rm PyPy}} f_{agg}$	1.0 0.9 -
645	1	0.09	0.07 ± 0.01	0.00 ± 0.00	0.93 ± 0.01	0.8 -
	30	2.2	0.06 ± 0.01	0.00 ± 0.00	094 ± 0.02	•••• 0.7 -
479	0.1	0.01	0.18 ± 0.03	$\begin{array}{c} 0.02 \pm \\ 0.00 \end{array}$	0.80 ± 0.03	
	0.7	0.08	0.18 ± 0.02	$\begin{array}{c} 0.02 \pm \\ 0.00 \end{array}$	0.81 ± 0.02	0 100 200 300 400 500 600 700 Pyrene Content, mmol/g polymer
	15	1.8	0.17 ± 0.02	0.01 ± 0.00	0.82 ± 0.02	
263	30	4.8	0.25 ± 0.02	0.06 ± 0.01	0.69 ± 0.03	

Model was able to determine the pyrene fractions in solution

N_{agg} for Py-PDMA

 Knowing the total pyrene concentration and the fractions of the species we can obtain [Py_{diff}]₀, [Py_{agg}]₀

From FBM we obtain <*n*>, which is the number of ground-state pyrene species per blob or:

$$< n > = \frac{[Py_{diff}]_0 + [Py_{agg}]_0 / N_{agg}}{[blob]}$$

• Assuming $[blob] = c \times [Poly]$, we can rearrange to get: $\frac{\langle n \rangle \times [Poly]}{[Py_{diff}]_0} = \frac{1}{c} + \frac{1}{c \times N_{agg}} \frac{[Py_{agg}]_0}{[Py_{diff}]_0}$

N_{agg} for Py-PDMA (cont'd)

From the slope and intercept: $N_{agg} = 3.1 \pm 1.6$

Application to HASE System

•Apply method used to determine f_{agg} and N_{agg} for Py-PDMA system to Py-HASE associative polymer system

- More industrially relevant system (HASE polymer used in latex paints as thickening agent)
- Relate f_{agg} and N_{agg} to physical properties of Py-HASE solutions under sheared conditions

HASE Polymers

 Hydrophobically modified Alkali Swellable Emulsion (HASE) polymer

 Polymer properties can be fine tuned by controlling ratio of X:Y:Z, PEO length n, and hydrophobe R

Pyrene Labelled HASE Polymer

Proposed Study Effect of Shear on Level of Association

Application of shear breaks up hydrophobic aggregates

Disrupts network leading to a drop in viscosity (shear thinning)

Goal: Map the changes in level of association Break up of aggregates leads to a change in (f_{agg} and N_{agg}) while the system is under network^{gg} using the proposed setup

Example of Fluorometer/Rheometer Setup

Steady-state fluorescence measurements of AP solutions located inside a rheometer

Richey, B.; Kirk, A.B.; Eisenhart, E.K.; Fitzwater, S.; Hook, J. *J. Coat. Technol.* **1991**, *63*, 31.

Proposed Fluorometer/Rheometer Setup

Steady-state and time-resolved fluorescence measurements of pyrene labeled HASE solutions located inside a rheometer

Experimental Coupled Setup

Experimental Conditions

Py-HASE with a pyrene content of 65 µM pyrene/g polymer

■ Solvent is 0.01 M Na₂CO₃, pH 9 solution

• [Py-HASE] = 5 w/w%

Rotation Experiment for Py-HASE

0.2 mm gap width between plates

Preliminary Steady-State/Rheometer Data

Little change in steady-state fluorescence despite 400x drop in viscosity

Preliminary SPC/Rheometer Data

Monomer Decay

Excimer Decay

Monomer and excimer fluorescence decays also exhibit LITTLE DIFFERENCE despite change of 400x in viscosity (f_{agg} and N_{agg} likely are unchanged)!

Conclusions for Fluorometer-Rheometer Experiments

- Concept for both single photon counter and steadystate fluorometer coupled with the rheometer proven to be feasible
 - Optimization of procedure/setup is required to improve signal to the detector

Need to build a more permanent setup

Conclusions for Fluorometer– Rheometer Experiments (cont'd)

- Little change observed in time-resolved and steadystate preliminary data indicating that little to no change in f_{agg} and N_{agg} with change in shear rate
 - Implies a switching between intra- and intermolecular associations with formation/disruption of network (energy transfer experiment)
 - More measurements varying setup parameters (measurement depth, gap width, concentration, etc.) need to be performed to verify this results
 - Introduce latex particles (found to affect steady-state spectra in the presence of shear according to Richey et al.)

Acknowledgements

- Dr. Jean Duhamel
- DOW Chemical for the Py-HASE and PyPEO
- Telmo Prazeres
- Duhamel and Gauthier Lab Groups

QUESTIONS?