# Probing Long Range Chain Dynamics of a Polypeptide in Aqueous Solution

### IPR 2010 Hummara Aslam May 11, 2010



#### Protein folding



http://www.chemguide.co.uk/organicprops/aminoacids/proteinstruct.html



#### **Protein Folding**



### Fluorescence Dynamic Quenching (FDQ)

Covalent attachment of a luminophore (D) and its quencher (Q) at the ends of a polymer chain



• Measurement of the rate constant,  $k_{cy}$ , for quenching of the fluorescing luminophore through end-to-end cyclization (EEC)

•  $k_{cv}$  and chain length (N) will give information on the flexibility of the polymer chain



### End-to-End Cyclization (EEC)

#### Limitations

- Bulk of the chain invisible
- Limited to monodisperse chains
- Cyclization rate constant  $(k_{cy})$  is dependent on chain length (N)



Can not be used for determining LRPCD of a polypeptide

#### Solution - Random labeling

 $\bigcirc$ 

### Random Labeling

A polymer chain is randomly labeled with a luminophore and its quencher

- Distribution of rate constants
- Data analysis becomes complicated

Solution- Fluorescence Blob Model (FBM)



- k<sub>blob</sub>= quenching rate constant of an excited luminophore (D) located in a blob containing a single quencher (Q)
- N<sub>blob</sub> = monomer units/blob (equivalent to N of EEC)
- Product  $k_{blob} X N_{blob}$  describes LRPCD (equivalent to  $k_{cy}$  of EEC)

## FBM

#### Previous use in lab

- Polystyrene
- Poly(*N*,*N*-dimethylacrylamide) (PDMA)
- Hydrophobically modified water-soluble polymers
- Poly(L-glutamic acid) (PGA)

#### Present study

First time to study the LRPCD of a polypeptide in aqueous solution

#### Polypeptide of Interest

#### Poly(L-lysine) (PLL)

NH<sub>2</sub> will allow covalent attachment of the luminophore and quencher onto PLL

#### Three conformations

- Random-coil
- α-helix
- β-sheet

-OH n

#### Luminophore

#### Pyrene

- ☑ Long lifetime (200-400 ns)
- Covalent attachment
- Water-soluble

#### **x** Not a good choice

Ruthenium polypyridine complexes

- ✓ Long lifetime (~600 ns)
- Covalent attachment
- ☑ Water-soluble

#### Good Choice

#### Luminophore

[Ru(bpy)<sub>3</sub>]<sup>2+</sup> Popular ruthenium polypyridyl

complex

Ruthenium bisbipyridine 5-aminophenanthroline chloride (RuNH<sub>2</sub>)



- Phenanthroline ligand allows attachment to a polymer
- Lifetime of ~600 ns in 0.1 M Na<sub>2</sub>CO<sub>3</sub> solution
- Water-soluble

Quinn, Cristina. Master's Thesis, University of Waterloo, 2007.

#### Luminophore

Isothiocyanate derivative of RuNH<sub>2</sub>

Ruthenium bisbipyridine 5-Isothiocyanatophenanthroline chloride (RuNCS)



NCS group will allow attachment onto the PLL via a thiourea linkage

#### Quencher

- Partially Water-soluble
- Covalent attachment to PLL
- Collisional quenching

1-Fluoro-2,4-dinitrobenzene (FDNB)

NO<sub>2</sub>

NO<sub>2</sub>





PLL labeled with RuNCS and FDNB via thiourea, and urea linkages respectively



 Synthesis, characterization, and modification of the watersoluble luminophore

 Covalent attachment of the luminophore and quencher to the polypeptide

 Time-resolved fluorescence studies on the solutions of labeled PLL at different pH's

 Analysis of the fluorescence decays by using the FBM to gain information about the LRPCD of a polypeptide as PLL changes conformations

- 1. Synthesis and characterization of RuNH<sub>2</sub>
- 2. Conversion of RuNH<sub>2</sub> to RuNCS
- 3. Labeling of PLL with RuNCS
- 4. Labeling of PLL with FDNB
- 5. Labeling of RuNCS labeled PLL with FDNB
- 6. Time resolved fluorescence studies of PLL labeled with RuNCS and FDNB

### 1.Synthesis of RuNH<sub>2</sub>



bis(bipyridyl) ruthenium (II) dichloride ( $RuCl_2$ ) + 5-amino-1,10-phenanthroline (5-phen)  $\longrightarrow$   $RuNH_2$ 

Procedure by Ellis et al., and Quinn. Purification by column chromatography 87% yield

Ellis, C.D.; Margerum, L.D.; Murray, R.W.; Meyer, T.J. *Inorg. Chem.* **1983**, *22*, 1283–1291. Quinn, Cristina. Master's Thesis, University of Waterloo, 2007.

#### <sup>1</sup>H NMR of RuNH<sub>2</sub> in deuterated acetonitrile



#### Preliminary Work Mass spectrum of RuNH<sub>2</sub> in 1:1 acetonitrile : water 304.5464 100 $m/z = M(Ru-NH2)^{2+}/2 = 304.5$ Theoretical NH2 2+ $2PF_6$ 304.0533 305.5530 \* 303.5477 303.0490 306.0537 $M[(Ru-NH2)^{2+}+(PF_6)^{-}]/1 = 754$ **Theoretical** m/z =301.5490 754.0702 753.0724 756.0675 306.5485 751.0691 ----- m/z 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

19

### Absorption and Emission Spectra of RuNH<sub>2</sub>



Ryan, E.; O'Kennedy, R.; Feeney, M.M.; Kelly, J.M.; Vos, J.G. *Bioconjugate Chem.* **1992**, *3*, 285–290.

#### Time-resolved Fluorescence Decay



 $\lambda_{ex}$ = 454 nm,  $\lambda_{em}$ = 600 nm

Degassed  $RuNH_2$  in 0.1 M  $Na_2CO_3$  solution (pH 9.6)

Ryan, E.; O'Kennedy, R.; Feeney, M.M.; Kelly, J.M.; Vos, J.G. Bioconjugate Chem. 1992, 3, 285–290.

21

#### 2. Synthesis of RuNCS



Ryan, E.; O'Kennedy, R.; Feeney, M.M.; Kelly, J.M.; Vos, J.G. *Bioconjugate Chem.* **1992**, *3*, 285–290.

#### Mass Spectrum of RuNCS in 1:1 acetonitrile : water



3. Labeling PLL with RuNCS



#### Procedure followed by Ryan et al.

Ryan, E.; O'Kennedy, R.; Feeney, M.M.; Kelly, J.M.; Vos, J.G. Bioconjugate Chem. 1992, 3, 285–290.

Absorption and emission spectra of PLL labeled with RuNCS (RuPLL)



#### **Time-resolved Fluorescence Decay**



 $\lambda_{ex}$ = 454 nm,  $\lambda_{em}$ = 600 nm

Degassed in 0.1 M Na<sub>2</sub>CO<sub>3</sub> solution (pH 9.6)

4. Labeling PLL with Quencher





4. Labeling PLL with Quencher

28



Extinction Coefficient at 362 nm = 15800 L.mol<sup>-1</sup>.cm<sup>-1</sup>

4. Labeling PLL with Quencher

29







30

6. Time-resolved Fluorescence Studies





PLL labeled with RuNCS and FDNB

 $<\tau> = 590$ 

6. Time-resolved Fluorescence Studies



Polylysine labeled with RuNCS and FDNB

Polystyrene labeled with Pyrene

$$k_{blob} \times < n > \infty \frac{< n >}{V_{blob}} = [Q]_{loc}$$

6. Time-resolved Fluorescence Studies



Polylysine labeled with RuNCS and FDNB

Polystyrene labeled with Pyrene

6. Time-resolved Fluorescence Studies



Polylysine labeled with RuNCS and FDNB

Polystyrene labeled with Pyrene



#### 6. Time-resolved Fluorescence Studies



#### 6. Time-resolved Fluorescence Studies

Product  $\eta$  5  $k_{blob}$  5  $N_{blob}$  5 n shows internal dynamics of a polymer

| Polylysine     | Polystyrene             | Polyisoprene             |
|----------------|-------------------------|--------------------------|
| 23± 6 × 10³ Pa | 74 × 10 <sup>4</sup> Pa | 244 × 10 <sup>4</sup> Pa |
|                |                         |                          |



Successful synthesis and characterization of RuNCS

Successful attachment of RuNCS and FDNB onto PLL

Time-resolved fluorescence studies of PLL attached with RuNCS and FDNB

> Agreement of preliminary FBM data with earlier results



 Obtaining time-resolved fluorescence decays with variation of solution pH

Analyzing the fluorescence decays with the FBM

# Acknowledgements

- Dr. Jean Duhamel
- Dr. Mario Gauthier
- Duhamel & Gauthier groups

# Comments/Questions