Emulsion Copolymerization Modelling
Nitrile Rubber in a Continuous Reactor Train

Introduction

$$
\begin{aligned}
& \text { The objective is to develop a dynamic model in order to } \\
& \text { simulate emulsion copolymerization of AN-Bd (Nitrile } \\
& \text { Rubber) in a series of CSTR's. } \\
& \text { The model will act as a practical tool that can be used by } \\
& \text { industry to predict production rate and product quality, as } \\
& \text { well as in various on-line control and optimization } \\
& \text { applications. } \\
& \text { Typical model predictions will include conversion, } \\
& \text { polymerization rate, copolymer composition, molecular } \\
& \text { weight, branching frequencies, and particle number and } \\
& \text { size. } \\
& \text { The effect of impurities within the reactor is of } \\
& \text { considerable concern, as they can drastically affect } \\
& \text { reactor performance and product quality. Thus, our } \\
& \text { model will consider both monomer and water soluble } \\
& \text { impurities. }
\end{aligned}
$$

Reaction Mechanism

Multiphase system: polymer particles, aqueous phase (continuous phase), and monomer droplets.

Redox Initiation
$\mathrm{I}+\mathrm{Fe}^{2+} \xrightarrow{k_{1}} \mathrm{R}_{\text {in }}^{\mathrm{g}}+\mathrm{Fe}^{3+}+\mathrm{Y}^{-}$ $\mathrm{Fe}^{3+}+\mathrm{RA} \xrightarrow{k_{2}} \mathrm{Fe}^{2+}+\mathrm{RA}^{+}$ $R_{i n}^{\mathrm{g}}+M_{j} \xrightarrow{k_{p_{\text {ph }}}} R_{1, j}^{\mathrm{g}}$

Propagation $R_{n, j}^{\mathrm{g}}+M_{j} \xrightarrow{k_{p y_{p}}} R_{n+1, j}^{\mathrm{g}}$

Termination $R_{n, j}^{\mathrm{g}}+R_{m, i}^{\mathrm{g}} \xrightarrow{k_{c}} P_{(n+m)}$ $R_{n, j}^{\mathrm{g}}+R_{m, i}^{\mathrm{g}} \xrightarrow{k_{\omega}} P_{n}+P_{m}$

Water-Soluble Impurities $R_{n, j}^{\mathrm{g}}+Z_{k} \xrightarrow{k_{2 / k}} P_{k}$

Monomer-Soluble Impurities $\quad R_{n, j}^{\mathrm{g}}+M S I_{k} \xrightarrow{k_{\text {maxid }}} P_{k}$
Chain Transfer Agent $\quad R_{n, j}^{\mathrm{g}}+C T A_{k} \xrightarrow{k_{\text {frat }}} P_{n, j}+C T A_{k}^{\mathrm{g}}$
Transfer to Monomer $\quad R_{n, j}^{\mathrm{g}}+M_{j} \xrightarrow{k_{m(n)}} P_{n, j}+M_{j}^{\mathrm{g}}$
Transfer to Polymer $\quad R_{n, j}^{\mathrm{g}}+M_{j} \xrightarrow{k_{\mathbb{D}_{j}}} P_{n, j}+M_{j}^{\mathrm{g}}$
$R_{n, j}^{\mathrm{g}}+P_{m, j}^{\text {ter }} \xrightarrow{k_{p, j}^{p_{j, ~}^{\prime}}} R_{n+m, j}^{\mathrm{g}}$
Terminal/
Internal Double Bonds

Model Formulation*

Initiator Balance:

$$
\begin{aligned}
& \frac{d N_{t}}{d t}=F_{t, i n}-\frac{N_{t}}{V_{\mathrm{w}}} q_{\mathrm{w}}-R_{t} V_{\mathrm{w}} \quad, \frac{d N_{\mathrm{Fe}^{2}}}{d t}=F_{F e^{2} ; n}-\frac{N_{F e^{2}}}{V_{\mathrm{w}}} q_{\mathrm{w}}-R_{F e^{2}}, V_{\mathrm{w}} \\
& \frac{d N_{R A}}{d t}=F_{R 4, i n}-\frac{N_{R A}}{V_{\mathrm{w}}} q_{w}-R_{R A} V_{\mathrm{w}}, \frac{d N_{F^{2}}}{d t}=F_{F^{2} e^{2}, n}-\frac{N_{R^{2}}{ }^{2}}{V_{\mathrm{w}}} q_{w}-R_{F_{e^{2}}} V_{\mathrm{w}} \\
& \frac{d N_{F e}}{d t}=F_{\text {Fe, in }}-\frac{N_{F e}}{V_{\mathrm{w}}} q_{w}
\end{aligned}
$$

Monomer Balance:

$$
\frac{d N_{m_{i}}}{d t}=F_{m_{j, i n}}-\frac{N_{m_{1}}}{V_{R}} q_{t}-\left(R_{p_{p_{m}}} V_{w}+R_{p_{p},} V_{p}\right)
$$

Bound Polymer Balance:

$$
\frac{d N_{p o l}}{d t}=F_{p o l, j, i n}-\frac{N_{p o l}}{V_{p}} a_{p}+\left(R_{p_{p, n}} V_{w}+R_{p_{p}, p} V_{p}\right)
$$

Water-soluble Impurities (WSI) Balance:

$$
\frac{d N_{z}}{d t}=F_{z, i n}-\frac{N_{z}}{V_{w}} q_{w}-k_{z}[Z]\left[R^{g}\right]_{w} V_{w}
$$

Monomer -soluble Impurities (MSI) Balance:

$$
\frac{d N_{\text {mid }}}{d t}=F_{\text {masin }}-\frac{N_{\text {mis }}}{V_{R}} q_{T}-k_{\text {fras }}[M S I]_{p} Y_{o} V_{p}
$$

Chain Transfer Agent (CTA) Balance:

$$
\frac{d N_{c a}}{d t}=F_{c a, i, i n}-\frac{N_{c t a}}{V_{R}} q_{T}-k_{\text {tcu }}[C T A]_{p} Y_{P} V_{p}
$$

Rates of Polymerization:

Radical Concentrations:

$$
Y_{o}=\frac{\bar{n} N_{p}}{N_{A} V_{p}},\left[R^{g}\right]_{w}=\sum_{j=1}^{l}\left[R_{j, A}^{g}\right]_{w}+\sum_{j=1}^{l / w_{j}^{k}}\left[R_{j, B}^{g}\right]_{w}+\left[R_{m}^{g}\right]
$$

Particle Nucleation:
$\frac{d\left(N_{p} V_{w}\right)}{d t}=F_{N_{v, i n}}-\frac{N_{p} V_{w}}{V_{R}} q_{T}+\left[\frac{d\left(N_{m i} V_{w}\right)}{d t}+\frac{d\left(N_{\text {pow }} V_{w}\right)}{d t}\right]-k_{F} N_{p}{ }^{2} V_{w}$

$\frac{d N_{\text {mic }}}{d t}=N_{A}\left(\rho_{\text {des }}+\frac{k_{c m}\left[R^{g}\right]_{w}^{\text {ap }}}{r_{\text {mic }}}\right) \frac{A_{m}}{A_{m}+\varepsilon A_{p}}$
Partitioning Approach (Preliminary):
$K_{j_{m}=}=\frac{\left[M_{j}\right]_{m}}{\left[M_{j}\right]_{w}}, \quad K_{j_{m p}}=\frac{\left[M_{j}\right]_{w}}{\left[M_{j}\right]_{p}}, \quad\left[M_{j}\right]_{w}=\frac{N_{m_{j}}}{K_{j_{m}} V_{m}+V_{w}+\frac{V_{p}}{K_{l_{p}}}}$

Results

Results are preliminary, as the model is in the troubleshooting/development phase. A plot of monomer conversion as a function of time is as follows:

The figure above is representative of the model's predictive capability under batch operation. Predictions not shown are those of number- and weight-average molecular weight, tri- and tetra-functional branching, polymerization rate, and particle size and number.

Future Work

MASc project commenced in September 2006
Immediate Future Steps
Extensions to CSTR's
Testing with batch/CSTR data
Critical comparison of different approaches for calculating the average number of radicals per particle, monomer/CTA/MSI concentrations in each phase, and particle nucleation
Parameter sensitivity analysis and parameter estimation

Long-term Future Steps
Evaluation of the model for on-line model predictive optimization and control scenarios
Possible model reduction studies
Relation of model outputs to rubber application indicators (i.e. Mooney viscosity). Such relations would act to facilitate the prediction of grade change effects.

References

