

Optimal Bayesian Design of Experiments for Polymerization Processes:

I. Implementation to Nitroxide-Mediated Radical Polymerization (NMRP)

A. Nabifar, N.T. McManus, and A. Penlidis, Institute for Polymer Research (IPR), Department of Chemical Engineering, University of Waterloo, and E. Vivaldo-Lima, UNAM, Mexico

General Research Objectives

 Apply ideas from design of experiments (applied statistical methodology) to various polymerization processes to:

o Identify optimal operating conditions to achieve certain polymer properties

o Clarify/determine values of key kinetic parameters of related process models

Why Bayesian Design?

- Experimental flexibility
- o No restrictions in number of experiments, sequence of experimentation, factor levels, dropping/adding factors, etc.
- Requires fewer trials
- But mainly, it does not ignore/discard prior knowledge
- Prior information is updated in a sequential manner, thus allowing, in parallel, the optimal update of key unknown parameters

 Prior information involves contributions from both the prior experimental region and a (usually non-linear) mathematical model for the process, thus making use of both experimental information and mechanistic models

Why Bayesian Design in NMRP?

Although literature on NMRP extensive, still many conflicting statements

- Many mechanistic claims, based on only a few data points over a typical 50 hr polymerization period
- Modeling efforts sporadic and usually very "case-specific"
- Design of experiments and systematic, concerted efforts lacking

Procedure for Bayesian Design of Experiments

- 3. Select the "best" experiments using a search algorithm
- 4. Analyze the experiments
- 5. Update the prior variance/covariance matrix (<u>U</u>) and vector of parameter estimates (θ)
- 3. Select the "best" experiments using a search algorithm
- 4. Analyze the experiments
- 5. Update the prior variance/covariance matrix (U) and vector of parameter estimates (θ)
- Given the new variance/covariance matrix, select the next sequence of experiments. Analyze the experiments and update θ and U, accordingly
- Repeat step 6 until the final sequence; select the last sequence of "optimal" experiments; after the analysis of the experiments, update the vector of the parameters, for the last time

A	Sami	ole of	Results	•	NMRP	Case	Study	
	Dam		Itcourto	٠	TATATAT	Cube	Diady	

- Choose design factors and their levels
- o based on a detailed and critical analysis of literature

Ingredient	Amount (Low)	Amount (High)
T (°C)	120 °C	130 °C
$[I]_0(M)$	0.036	0.072
[N] _a (M)	0.058	0.082

 $\label{eq:BPO} \ensuremath{\left[I \right] 0^{\circ} initial initiator concentration (BPO); \ensuremath{\left[N \right] 0^{\circ} initial initiator (TEMPO) Selection of responses \ensuremath{}$

- o Batch time
- o Weight-Average Molecular Weight
- Incorporation of prior knowledge
- To generate the prior : 2³ conventional factorial design was simulated with a computer program based on a general mechanistic model developed for NMRP
- o Linear regression on the data : vector of parameter means
- o "Brainstorming" on the maximum/minimum value of the parameters: variance

Variances of the responses were calculated from previous experimental results and experience

Selection of experimental design

- o Two sequences of two experiments
- Objective: quantify the relative importance of key factors

Illustration of the first sequence of experiments

Variance/covariance matrix and the vector of parameter means were updated

Next sequence of two experiments was designed using the updated variance/covariance matrix

Illustration of the second sequence of experiments

Discussion

- To quantify the relative importance of the parameters as well as the adequacy of the model used to generate the "prior knowledge", certain statistical tests were carried out
- Fest 1: indicator of the "uncertainty of the expert"
- Test 2: indicator of the actual significance of an effect
- Test 3: indicator of the "quality of expert's opinion"
- Results and tests for molecular weight response of case study

T×[I] T×[N] [I]×[N] T×[N×[N]	-183.40 107.10 -175.13	-173.95 106.98 356.79	-183.40 107.04 498.44	-1.83 0.11 -0.23	-1.84 0.19 1.15	5.88E-05 -0.0001 1.54871 2.0E.05
T×[I]	-183.40	-173.95	-183.40	-1.83	-1.84	5.88E-05
T×[N]	107.10	106.98	107.04	0.11	0.19	-0.0001
[I]×[N]	-175.13	356.79	498.44	-0.23	1.15	1.54871
T×[I]×[N]	140.23	137.86	140.23	2.80	2.81	-2.9E-05

o TEMPO concentration, [N], is most influential on molecular weight response

- Effect of temperature on molecular weight response is not that dramatic in this range (Effect of initiator concentration, [I], as expected)
- o Test 1 shows that all three main factors are significant in expert's opinion
- Test 2 verifies the actual **significance** of an effect; in agreement with expert's opinion
- Test 3 implies that expert's opinion is valid; the mechanistic model seems reliable
- Bayesian analysis in case study has confirmed/reinforced experimental results!

Future Work
Expand the implementation of Bayesian design in NMRP by using a non-linear model
Combine the Bayesian design methodology with statistical criteria to reduce parameter correlation
Bayesian technique perfectly general; can be potentially applied to other processes
 Examples: Emulsion copolymerization of NBR/SBR rubber; NMRP in supercritical carbon dioxide; Multi-component polymerization systems with depropagation; NMRP in the presence of cross-linking, etc.