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Gecko climbing on bamboo surfaces Dew drops adhering to a spider web



!ngmeerlng an! !uture Innovatlons

sive
Q ds\
Adhesive tapes & labels Paper — fiber ork

&L -

Polymer adhesive shield Mico/nano particles StickyBot, Stanford
Univ, 2006

Polymers are Good Adhesives 3
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Intermolecular attractive Interaction
(Van der Waals forces)

Unit area

Two smooth surfaces leap into

Johannes Diderik van der Waals contact at nanometer (10-°m)
The Nobel Prize in Physics 1910 distance

Human hair ~ 100 micrometer in diameter



Surface roughne$ces Surface deformation in
adhesion

detachment

The adhesion and detachment mechanisms matter :



Recent researc

Mica surface

PSA tape

The adhesives/paper lastic thin Gecko adhesive
interactions coating films system

\ uture Research

Biomimetic or Bio-inspired Adhesion and Smart
Adhesives



Overall Objectives

< To identify and characterize the.behaviors of “soft”

(synthetic and biological) adhesive surfaces and
associated micromechanical properties
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“ To develop new concepts, approaches and technigues
to tune adhesion.and make smart adhesives .
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Today: to highlight key research findings
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PSAs are materials which adhere under a
light pressure.

PSAs are polymeric and have a property

called viscoelastic. —
They behave like liquid in bonding while OH
fracture like solid in debonding. c|;:o
+CH2?+_——-CH2<|:H--—CH2TH—]~
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: l
_ Coating : Fle
< layers Acrylic PSA

Backing material (Release / bonding Agent)




Splicing tape >

Flying-splice in papermaking mills

Performa equirements:
on
%pulpable in recycling

Occasional Failure costs millions $$%

Research questions:

What are the fracture mechanisms?

How to make stronger adhesive
bonds?
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PSA Tape

It involves complex mechanical
effects

— Peeling angle
— Bending curvature
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Wheel We fixed d = 0 in most of our

measurements
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Peel Force, N/mm
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Interfacial Failure

Paper Failure
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enomena

Interfacial failure

Tape Adhesive
fibrils
Paper

Paper failure

Delamination

. . . .13
Fibers do not break in delamination.




are Functions of Velocity

Max. Peeling Force

In logarithmic scales

PSA cohesive failure

Contact pressure & time

Surface energy & roughness .«
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Paper failure
—interfiber bot
strength

nding

Peeling Velocity

Zhao, Pelton, Tappi, 2004
Zhao, Anderson, Banks, Pelton, J. Adhesion Sci. Technol. 2003, 2004

ldentified a critical
velocity, V., for the
transition of failure
modes

Established the link
between paper, tape
properties, and
adhesion performance.

Surface energy is
determined by surface
chemistry

14



Paper Surface Strength

Separation tape Backing paper
Peeling adhesive tape
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Test paper 4
Fixing tape — i
Metal plate (A)
Instron
Crosshead

Backing
paper
Separation
tape

Peeling adhesive
tape

Test
paper

Metal
plate

Instron
Crosshead

(B)

Zhao and Pelton, Tappi, 2004
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Industrial standard method

This method cost less than industrial
methods; it is adopted by the
Australian Pulp and Paper Institute.
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Interfiber Adhesion Strength

Fiber surface _
negatively-cha q Adhesion force

10nm
=
Ad%esion

Polymer
chain

Water removal

Interfiber-bonds

H, 2
pe, A
O \H H/” In
CHOH 4 5
N
0 o - y H,C CH,

Hydrophilic cellulose Hydrophilic PE Hydrophobic PE

negative charged to enhance adhesion to reduce adhesion 16



Summary
Adhesives are highly deformed and form fibrils.

The adhesion forces increase and failure modes change
as peeling velocity increases.

The max adhesive/paper joint strength is determined by
paper surface strength. This finding resulted in a simple
approach to measure paper surface strength.

Interfiber adhesion strength can be tuned by adding
polyelectrolytes.
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Snapping of a liquid bridge ' racture of solid

~—r— Q

iS¥far less
understood
W

g

.v
/A\

e.g. water, viscosity of 103 Pa. S e.g. ice, viscosity of 10''Pa.S 19
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 To identify and characterize:
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fallure mechanisms of micro/nano thin films

— Molecular interaction, surface deformation and
Instabilities in.adhesion and subsequent
separation
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Temperature
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Sugar Films Coated onto Mica Surfaces

| AFM imaging of sugar surface
Mica surface

f
Amorphous sugar coating ~0.05um
|

Mica surface

Three typical experimental
temperatures in N, atmospheres

— Glassy state at 23°C
— Viscoelastic state at 40°C
— Viscous fluid state at 75°C

Image Statistics

Image RMS =0.537nm
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Fallure Mechanisms

SFA: Surface Forces Apparatus ﬂ
FECO: “Fringes of Equal Chromatic Order” - i 2a i
thin film interference patterns

light Microscopy imaging Adhesive contact

‘

Top view — Newton'’s ring

O “FECOQO” fringes

Spectrometer
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Tabor, Winterton, Israelachvili, 1970 Wavelength (A)
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abrupt peeling Classic adhesion
theory ( equilibrium
and elastic
system)

Johnson, Kendall, Roberts (1971) Proc R Soc London Ser A 324:301-313.
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Surface energy
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Contact diameter (pm)

, Viscosity o

Unloading
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Contact diameter (um)
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Transient surface patterns during fluid-fluid coalescence

Zeng, Zhao, Tian, Tirrell, Leal and Israelachvili, 2006



Viscous fingerings due to the Instability during the peeling of

Saffman-Taylor instability adhesiv®
2 _ 4000 QQ
d

& S

S a ~200um

A
N

Glass surface

20pm

F. Frankel, G. M. Whitesides, On
the Surface of Things, 1997

Viscous fingerings consume a large amount of energy, giving a strong adhesive bond.



Detachment

Solid-like
sharp tips
<—(high local stress)

A

Liquid-like Cavitations
e video demo — a slow-down rounded fingers

process (low local stress)

_ Co-existence of sharp tips and
This may be due to the lateral round fingers were observed
acceleration of fluid during its normal for the first time, suggesting a

29

separation. unifying theory.



Summary

* The fracture of two adhered surface was manifested
by crack nucleation and propagation at one extreme
and the snapping of a liquid-bridge at the other

* The fracture of two adhered viscoelastic surfaces was
manifested by rounded fingers

* Practical Implications

— Cavitations and fingerings consume a large amount
of energy, rasulting in a strong adhesive bond.

— Adhesion can tuned by adjusting material viscosity.

30






Gecko — a Super Climber

Tokay gecko on walls

House gecko on ceilings

John Bokma @2007 Marbled Gecko

Photo Courtesy Ben Moulton
Hawaiian Gecko

There are about 850 gecko
Species.

We focus on Tokay gecko,
the largest species

32
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Spatulae (B- keratin nano-
structures) behave like

adhesive tape.
Adhesion via intermo\

van der Waal forces

s
100-1000 spatulae/setae
~14,400 setae/mm? \
100 nm
33
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Recent Research and Challenges
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Many research on the fibrillar surfaces (varied
aspect-ratio, shape)

Physical characterization-ef gecko attachment
and detachment.

Design of ‘respansive’ surfaces for smart
adhesives'and robotic applications

StickyBot,
Stanford Univ,
2006
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- Peeling Mechanism

— Gecko engages attachment

at small pulling angles while
tdetachment at large angles
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Peeling angle, 6

Detaching gecko foot 35




- Peeling Mechanism

Adhesioh;' etachment at large angles

AN

0 engages attachment
Qj all pulling angles while
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Surface features of
the gecko setal arrays

Detaching gecko foot 36




esive Tape

PSA Tape

‘rong paKeratin, Soft polymer
" | E~40°Pa oines L, E~10°Pa
Build-in micro/nano fibrillar structures Stress-induced adhesive fibrills

Fibrillar structures consume a large amount energy in
detachment, resulting in high adhesion strength 37



Measurements

Gripping Releasing
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Surface Forces Apparatus

Gecko setal arrays are
structurally anisotropic, exhibiting
strong directional adhesion and
friction properties.
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Gripping direction Releasing direction
E _ e ! Load To mimic gecko
= 12 | Adhesive— v ¢ oad - adhesive pads
f friction dependent and N
- behavior friction functionalities,
o g | behavior anisotropic
- curved _
2 structure Is
c “JKR” Amontons friction law essential.
S 4t
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L
0 ‘
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|—+v Adhesion Repulsion L-v
Normal force, L., (mN)
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Zhao, Israelachvili, et al., Langmuir, 2007



Summary

Gecko foot pads behave like adhesive tape while its
robust and responsive adhesion arises from the build-in
micro/nano-sized fibrillar structures:

Many things are still unknown, e .g. . the formation of

gecko fibrils

—(SD

This suggests a newdstrategy to design and tune
adhesion by surfagéypatterning.
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Current and Future Research

@ WATERLOQ INSTITUTE FOR

nanotechnology




adaptable materials

Nature Science Fabrica'@ Application

Responsive and adaptable to external , both chemical and mechanical, stresses



NON-Responsive surface

Tokay gecko on
walls

Climbing Velcro man
Video demo

5mm




Overall Research Objectives

As future technological innovations gear towards
miniaturizing machines and maximizing performance
density, our challenges as engineers and scientists
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and understand phenomena at a scale we normally do
not deal with.

Focus on polymeric materials for both mechanical and
biological applications.
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t devices, which are
Post-it Note

45
(Materials Today, 2004)



Fabrication of micro polymer pillars

() Microfabrication of silicon (i) “PDMS mold fabricated (i) Polymer micro-pillar
masters for molding using silicon masters structures fabricated
using PDMS mold

» Key design factors: Number density, Aspect ratio, Mechanical strength,
Surface chemistry

46
In collaboration with Dr. Israelachvili and Dr. Turner group at UCSB



Fabrication of micro polymer pillars
with “tailored” properties

water

P

Water droplet

|||||||||||||||||| PMPO-25

4
Micro-structured surf%

In collaboration with Dr. Alex
Penlidis and Dr. Neil McManus

47

S.-H. Zhu, N.T. McManus, C. Tzoganakis, A. Penlidis, 2007



Tilted PDMS mold

\ Gecko directional adhesion/

To mimic this properties, we fabricate curved pillars. Curved micro-pillars

In collaboration with Dr. Turner group at UCSB and Dr. 48
Pesika group at Tulane University



Sum mary FABRICATION OF BIOMIMETIC
STRUCTURES AT SMALL SCALES FOR
RESPONSIVE AND ADAPTABLE

il | MATERIALS APPLICATIONS
{wwn) Friction/shear
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Gecko-like micro/nano structured
materials

I

Surface forces and micro/nano tirbological studies

Micro/nano porous hydrogels , artificial
cartilage, and joint lubrication
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