## Polymer Processing Additives Based on Highly Branched (Arborescent) Graft Polymers

Firmin Moingeon, Steven Teertstra, Nagin Patel, Mario Gauthier,\* and Costas Tzoganakis

Institute for Polymer Research, Department of Chemistry,

University of Waterloo, ON N2L 3G1









## Outline

- Introduction to Polymer Processing Additives (PPA)
- Arborescent Polyisoprenes
  - Synthesis & Characterization
  - Capillary Rheometry Measurements
- Arborescent Polymers with Metal-binding Groups
  - Synthesis & Characterization
  - Capillary Rheometry Measurements
- Conclusions





#### **Processing of Polyolefins**

 Extrusion: Forming of molten polymer into various shapes by forcing through a die, e.g. Linear low density polyethylene (LLDPE) monofilament
 "Sharkskin" and cyclic melt fracture: Defects in extruded LLDPE visible as ridges perpendicular to the direction of flow









#### Polymer Processing Additives

□ Fluorinated polymers added at low concentrations (< 0.1% w/w or 1000 ppm) to eliminate melt fracture and reduce extrusion backpressure

□ Formation of droplets (0.1-20  $\mu$ m) that migrate to the polymer-metal interface

Low surface energy at the interface promotes slippage of the flowing polymer



Goal: Investigate the use of fluorinated arborescent polymers as PPA





#### **Arborescent Polymers**

Branched structure obtained from successive grafting reactions



- Li, J.; Gauthier, M. *Macromolecules* **2001**, *34*, 8918.

- Kee, R.A.; Gauthier, M. Macromolecules 1999, 32, 6478.

# Project #1

**Fluorinated Arborescent Polyisoprenes** 











#### Molecular Weight Characterization of PPA

|                |                |                     | $\mathbf{U}$                   |                |                    |                                |
|----------------|----------------|---------------------|--------------------------------|----------------|--------------------|--------------------------------|
|                | sample         | Before fluorination |                                |                | After fluorination |                                |
|                | Sample         | $M_{w}^{app}$       | M <sub>w</sub> /M <sub>n</sub> | f <sub>w</sub> | $M_{w}^{app}$      | M <sub>w</sub> /M <sub>n</sub> |
|                | PIG0[5]2.5-F35 | 41 200              | 1.05                           | 15             | 41 000             | 1.13                           |
|                | PIG0[5]5-F9    | 73 000              | 1.02                           | 14             | 55 000             | 1.08                           |
|                | PIG0[5]5-F16   |                     |                                |                | 63 000             | 1.09                           |
|                | PIG0[5]5-F28   |                     |                                |                | 71 000             | 1.09                           |
|                | PIG0[5]5-F41   |                     |                                |                | insoluble          |                                |
| my for the     | PIG0[5]10-F37  | 119 000             | 1.04                           | 11             | 100 000            | 1.09                           |
| E E E F        | PIG0[5]20-F34  | 195 000             | 1.06                           | 10             | 170 000            | 1.13                           |
| ( ) j m        | PIG0[10]5-F29  | 113 000             | 1.04                           | 23             | 92 000             | 1.14                           |
| E Marine State | PIG0[15]5-F24  | 241 000             | 1.02                           | 40             | 150 000            | 1.11                           |





## Extrusion Testing: Experimental Procedures

- Melt blending at 0.1% w/w (5 min at 190°C)
- Extrusion in a capillary rheometer at different shear rates (50 1000 s<sup>-1</sup>) (die length-to-diamater ratio 50/1; entrance angle 90°)
- Performances evaluated in terms of:
  - Backpressure drop observed (relative to LLDPE without PPA)
  - Appearance of the extrudate
- □ Low molecular weight poly(ethylene glycol) (PEG-3K) used as coadditive in some cases (3:2 ratio vs. PPA)
- □ Fluorinated linear isoprene homopolymers also tested as PPA
  → no improvement in processability





### Extrusion Testing: Effect of Backbone Length



- Small improvement in appearance
- Largest pressure drops for shortest backbone, lowest  $M_w$





### Extrusion Testing: Effect of Side Chain Length



Best result for  $M_w$  side chains ~  $M_w$  backbone





#### Extrusion Testing: Effect of Fluorine Content



Intermediate fluorine content optimal





### Extrusion Testing: Effect of PEG Co-additive



Co-additive highly beneficial (partitioning agent)



Fluorinated Arborescent Polyisoprenes with Metal-binding Polar Functionalities





<u>Goal:</u> Introduce specific interactions between the metallic surface of the processing equipment and the PPA layer



 $\rightarrow$  Decrease the rate of desorption of the PPA during the extrusion





## Synthetic Scheme (1)



Key: use of a bi-functional initiator Li





## Synthetic Scheme (2) (e.g. G0 polymer)







# 24 E

#### Graft homopolymers: Molecular weight data

|                     | backbone |                                | Side<br>chains | Gra    | Graft polymer |      |  |
|---------------------|----------|--------------------------------|----------------|--------|---------------|------|--|
|                     | $M_w$    | M <sub>w</sub> /M <sub>n</sub> | M <sub>w</sub> | $M_w$  | $M_w/M_n$     | Arms |  |
| G0PI[5]-5           | 4900     | 1.08                           | 5200           | 71000  | 1.07          | 13   |  |
| G0PI[5]-10          | 4900     | 1.07                           | 10500          | 99400  | 1.07          | 9    |  |
| G0PI[7]-10          | 7100     | 1.07                           | 10700          | 179000 | 1.08          | 16   |  |
| G0PI[10]-7          | 11200    | 1.08                           | 7200           | 160000 | 1.07          | 21   |  |
| G0PI[10]-10         | 11200    | 1.08                           | 8000           | 186900 | 1.09          | 22   |  |
| G0PI-g-PI2.5        | 00400    | 1 07                           | 2900           | 600900 | 1.04          | 176  |  |
| G0PI- <i>g</i> -PI5 | 99400    | 1.07                           | 4700           | 722000 | 1.04          | 129  |  |





#### Molecular Characterization (<sup>1</sup>H NMR)





#### Chain extension by ATRP: <sup>1</sup>H NMR characterization











#### Graft copolymers: Molecular weight data

|                       | After ATRP     |           |    | Fluorination | Hydrolsyis |
|-----------------------|----------------|-----------|----|--------------|------------|
|                       | M <sub>w</sub> | $M_w/M_n$ | DP |              |            |
| G0PI[5]10             | 105000         | 1 29      | 20 | 34           | 11         |
|                       | 105000         | 1.20      |    |              | 19         |
| G0PI[5]5              | 120900         | 1.96      | 20 | 24           | 13         |
| G0PI[7]10             | 187000         | 1 73      | 20 | 24           | 35         |
|                       |                | 1.75      |    |              | 0          |
| G0PI[10]7             | 123000         | 1.34      | 5  | 25           | 100        |
|                       | 95800          | 1.10      | 10 | 40           | 100        |
|                       |                |           |    | 24           | 100        |
| G0PI[10]10            | 108800         | 1.24      | 7  | 30           | 100        |
|                       |                |           |    | 40           | 100        |
| G0PI- <i>g</i> -PI5   | 370000         | 1.36      | 7  | 26           | 18         |
|                       | 441000         | 1.32      | 15 | 21           | 100        |
| G0PI- <i>g</i> -PI2.5 | 376000         | 1.28      | 12 | 25           | 100        |





#### Extrusion Testing : G0 polymers



- Elimination of ss, CMF delayed to higher shear rates
- Modest decrease in backpressure





#### Extrusion Testing : G1 polymers

|                                      | Extrudate appareance                                 |
|--------------------------------------|------------------------------------------------------|
| G1PI2.5-F25-PtBMA(12) <sub>100</sub> | ss @ 200 s <sup>-1</sup> . CMF @ 600 s <sup>-1</sup> |
| G1PI5-F26-PtBMA(7) <sub>18</sub>     | ss @ 200 s <sup>-1</sup> . CMF @ 400 s <sup>-1</sup> |
| G1PI5-F21-PtBMA(12) <sub>100</sub>   | ss @ 200 s <sup>-1</sup> . CMF @ 400 s <sup>-1</sup> |
| G1PI0-F17-PtBMA(37) <sub>28</sub>    | ss @ 200 s <sup>-1</sup> . CMF @ 400 s <sup>-1</sup> |
|                                      |                                                      |

 No improvement in term of backpressure reduction or extrudate appearance

> Too many PMAA chains hindering the lubricating action of the PPA molecules?





#### Mode of incorporation of the PMAA segments

Chain extension by ATRP performed with a different catalytic system  $\rightarrow$  CuBr/PMDETA used instead of CuBr/2,2'-bipyridyl

Model experiments on linear substrates showed that more uniform poly(methacrylic acid) segments obtained



ATRP with CuBr/PMDETA



#### Extrusion Testing: G0 polymers (2)

|                                         | Extrudate appareance                                                                                                   |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| G0PI[7]-5-F24-PtBMA(20) <sub>13</sub>   | ss @ 300 s <sup>-1</sup> . CMF @ 600 s <sup>-1</sup>                                                                   |
| G0PI[10]7-F40-PtBMA(10) <sub>100</sub>  | Glossy up to 400 s <sup>-1</sup> (up to 19% backpressure reduction at 300 s <sup>-1</sup> ), CMF @ 600 s <sup>-1</sup> |
| G0PI[10]-10-F24-PtBMA(7) <sub>100</sub> | ss @ 300 s <sup>-1</sup> . CMF @ 400 s <sup>-1</sup>                                                                   |
| G0PI[10]-10-F30-PtBMA(7) <sub>100</sub> | ss @ 200 s <sup>-1</sup> . CMF @ 400 s <sup>-1</sup>                                                                   |
| GPI[10]-10-F40-PtBMA(7) <sub>100</sub>  | ss @ 200 s <sup>-1</sup> . CMF @ 400 s <sup>-1</sup>                                                                   |
|                                         |                                                                                                                        |

- Backpressure reduction negligible for most of the samples
   One sample: G0PI[10]7-F40-PtBMA(10)<sub>100</sub> yielded a higher load reduction and remained glossy up to 400 s<sup>-1</sup>
  - Complete coverage of the macromolecule by PMAA segments inhibits its lubricating action?











### Conclusions

Fluorinated arborescent G0 and G1 isoprene homopolymers synthesized

- Poor performance as PPA on their own
- Some G0 structures very effective when combined with a low molecular weight poly(ethylene glycol) co-additive

New class of fluorinated arborescent PPA with polar groups synthesized and characterized

- More effective to eliminate sharkskin than non-binding PPA
- Appearance improvements, moderate backpressure reductions
- Heterogeneous distribution of PMMA leads to better performances
- Best performance for G0 structures

### Future work

- Optimize the structure (PMAA content, backbone length, side chain length,...)
- Investigate other polar groups (thiol, amine,...)
- Investigate higher generations of polymers
- Investigate action of fillers

Acknowledgements





Prof. Neil McManus