Synthesis of Arborescent Polypeptides for Controlled Drug Delivery Applications

Greg Whitton, Mario Gauthier Department of Chemistry

IPR Symposium May 1st, 2009

OUTLINE

- Objectives
- Synthesis
- Results
- Future Work
- Acknowledgements

PROJECT OBJECTIVES

- Synthesize biocompatible branched polymers with narrow molecular weight distributions (MWD)
 Unimolecular micelles
- Demonstrate the feasibility of the synthetic scheme
 Grafting yield and coupling efficiency
- Demonstrate suitability for applications in microencapsulation (drug delivery)
 - Solubilization and release of hydrophobic probe molecules

MICELLES

- Linear diblock copolymer micelles
 - Dynamic structure: Molecules in micelle interchange with free molecules
 - critical micelle concentrations (unstable at C < CMC)

- Dendritic micelles
 - Narrow molecular weight distribution
 - low molecular weights

Arborescent Micelles

 Branched structure obtained from grafting onto scheme

- → Static structure (stable, no CMC)
- High molecular weights achieved in only a few grafting cycles
- → Biocompatibility: Amino acid derivatives

Synthesis

Synthetic Scheme

- Ring opening 'living' polymerization
 - γ -benzyl or γ -t-butyl L-glutamate monomers
- Partial deprotection of poly(γ-benzyl L-glutamate) (PBLG) substrate to generate randomly distributed grafting sites
- Grafting
 - Comb-branched polymer (Generation zero, G0)
 - Higher generations G1, G2etc.
- Shell modification
 - Attach water-soluble components for micelle formation

SYNTHESIS OF SIDE CHAINS

SYNTHESIS OF SUBSTRATE

GRAFTING

• Substrate coupling with side chains

- Grafting sites activated by carbodiimide technique
 - → DIC/HOBt
- Stoichiometry varied to maximize grafting yield

GENERATIONS 1, 2,...

 Graft polymer isolated with preparative GPC column Fast separation of 60-80 mg crude product per injection

Analytical Column:10 mm I.D.Prep Column:**22 mm** I.D.

MICELLES: SHELL ADDITION

Last grafting cycle: Hydrophilic side chains

Water-soluble Unimolecular micelle

CHARACTERIZATION

- Gel Permeation Chromatography (GPC)
 - Apparent and absolute molecular weights (M_n, M_w)
 - PDI for linear and graft polymers
 - Grafting yield
- NMR Spectroscopy
 - Number-average degree of polymerization (DP_n)
 - Absolute M_n
 - Deprotection level of substrate
 - Derivatization/¹⁹F NMR to detect primary amine chain ends
- Static Light Scattering
 - Absolute M_w , PDI
 - Coupling efficiency
- UV and Fluorescence Spectroscopy
 - Monitoring of probe solubilization capacity and kinetics

RESULTS

RING OPENING POLYMERIZATION

Preparation of Poly(γ-benzyl L-glutamate) Linear Side Chains

Sampla #	% Yield	¹ H NMR		GPC ^a	
		DP _n	M _n	M _n apparent	M _w /M _n
51	89	18.1	4,300	6,500	1.10
55	87	21.0	4,900	8,600	1.10
56	89	19.2	4,500	7,000	1.13
57	94	16.7	4,000	4,600	1.12
58	86	18.9	4,500	5,900	1.14
59	94	16.3	3,900	6,000	1.14

^a DRI detector

→ PDI = **1.10-1.14**, satisfactory

 \rightarrow Chain functionality (-NH₂) level determines coupling efficiency

SIDE REACTIONS IN ROP

- Destroy 'living' primary amine
- Broaden MWD
- → Mostly end group cyclization
 - Specific to poly(γ-benzyl L-glutamate)

Modify reaction conditions to reduce side reactions

STRATEGIES TO AVOID SIDE REACTIONS

DETECTION OF SIDE REACTIONS IN ROP

DETECTION OF SIDE REACTIONS IN ROP

Using ¹⁹F NMR spectroscopy to quantify -NH₂

DETECTION OF SIDE REACTIONS IN ROP

	% NH2 groups		
Sample #	TFBA	BTF	
Poly(Bz-Glu)-20	20	25	
Poly(Bz-Glu)-30	58	66	
Poly(Bz-Glu)-50	15	20	
Poly(Bz-Glu)-58	74	79	
Poly(Bz-Glu)-64	79	84	
Poly(Bz-Glu)-65	40	43.7	
Poly(Bz-Glu)-71	41	46	
PEG1900-NH2	72	79	

- ~5% Discrepancy between TFBA and BTF methods, but sample grading is mostly consistent
- QUANTITATIVE method

DEPROTECTION OF SUBSTRATES

Deprotection of Poly(γ-benzyl L-glutamate) Substrates

Sample	Target Deprotection	Mole Ratio of HBr to Benzyl	% Deprotection	
		ester Units	¹ H NMR	Titration
34	30	0.25:1	31	30
В	30	30:70	33	34
С	30	30:70	31	30
G0-52	30	0.3:1	32	
G0-53	30	0.3:1	32	
G1-2	20	0.2:1	16	
G1-4	30	0.3:1	16	
G2-3	30	0.3:2	26	

- Good agreement between ¹H NMR analysis and titration
- Titration difficult for arborescent substrates

GRAFTING REACTION: GPC ANALYSIS

PG-g-PG-56 Crude and Purified

- Purification achieved after only one injection
- Narrow MWD maintained after purification

HINDERED GRAFTING REACTION

- No reaction for grafting on G0 in DMF
 - Possible α -helix conformation of G0 substrate and side chains
 - Run ¹H NMR to confirm (500 MHz)

GENERATIONS 1, 2,...

Characteristics of Arborescent Poly(γ-benzyl L-glutamate) for Successive Generations

Sampl e #	M _n Side chain ^a	DRI	MALLS		Grafting	Branching Functionality
		M _n ^{app}	M _n	M _w /M _n	Yield (%) ^b	(%) ^c
G0	4,300	17,400	48,000	1.04	38	9
G1	4,000	39,300	133,000	1.06	63	21
G2	3,900	83,100	486,000	1.03	46	90
G3	3,900	134,000	1,060,000	1.03	32	147
a 11 I NIMD b DDL data ataw C MALLO Data ataw						

^{a 1}H NMR, ^b DRI detector, ^c MALLS Detector

GENERATIONS 1, 2,...

- Narrow MWD maintained
- Graft polymers free of linear contaminant

MICELLES: SHELL ADDITION

Last grafting cycle: Poly(γ-tert-butyl L-glutamate) side chains

Poly(benzyl L-glutamate) Poly(*tert-*butyl L-glutamate) Poly(L-glutamic acid)

- Soluble in water and alkaline water solutions
 → Gradual desolubilization by dialysis
- $-CO_2H$ groups buried in core (\rightarrow less hydrophobic)

FUTURE WORK

- Modification to generate water-soluble micelles
 - Addition of longer or more PEG or Poly(OtBu-Glu) segments
 - Addition of hydrophilic segments at chain ends
- Solubilization studies with hydrophobic probes
 - UV-monitored
- Study of release kinetics
 - Fluorescence- and UV-monitored

MICELLES: SHELL ADDITION 2

- Last grafting cycle: Side chains with H-Glu(OtBu)-OtBu initiator
- Remove protecting groups to functionalize ONLY chain ends (two –CO₂H per chain end)

H-Glu(OtBu)-OtBu

SOLUBILIZATION AND RELEASE STUDIES

Polycyclic aromatic hydrocarbons (PAHs) as probes

ACKNOWLEDGEMENTS

- Dr. Gauthier
- Dr. Duhamel
- Members of the Gauthier and Duhamel Groups

RELEASE KINETICS

- Fluorescence Resonance Energy Transfer (FRET) experiments
 - Characterize release kinetics of hydrophobic probes from arborescent micelles

$$R_A = \frac{I_A(t) - I_A(0)}{I_A(\infty) - I_A(0)}$$

 R_A = Normailized experimental fluorescence intensity ratio (time-dependent)

 I_A = emission intensity at start (0), given time (t), and at equilibrium (∞)

RELEASE KINETICS

- Fluorescence quenching experiments
 - Using Pyrene and ionic quencher thallium nitrate (TINO₃)

Stern-Volmer equation

$$\frac{I_0}{I} = 1 + k_q \tau_0[Q]$$

Modified Stern-Volmer equation

Overall Synthetic Scheme

-Explain each step briefly so audience can get an idea of what is going on -mention more details on synthesis later

ROP MECHANISM

Deprotection Mechanism

