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Introduction

Most polymerization reactors exhibit highly nonlinear dynamics and can
benefit from process control strategies that account for these features.

Chemical processes usually operate at or close to constraints (e.g. product
quality, environmental) and it is important that the controller is aware of
them.

Nonlinear model predictive control (NMPC) is an advanced control
algorithm that explicitly considers nonlinear dynamics and plant constraints
in its formulation.

The goal of this work was to develop and demonstrate (simulation) an
NMPC formulation for the control of temperature profile and polymer
quality (molecular weight) in a high-pressure LDPE autoclave reactor.

Process Modeling

Industrial LDPE autoclaves are usually long vessels with multiple initiator,
monomer feed points along the reactor length.

The reactor is usually assumed to be adiabatic because the thick reactor
walls required to withstand high operating pressures more-or-less prevents
heat transfer/loss.

In this study, the LDPE autoclave is modeled as
an adiabatic reactor with three well mixed
zones.

The reactor is divided such that a single pair of
initiator, monomer feed streams enters each
zone.

Backmixing between adjacent zones is included
to model imperfect mixing.

Online measurements of temperature profile
and molecular weight (i.e. controlled variables)
are assumed available.

Control inputs are the initiator (heating effect),
monomer (cooling effect) feed rates.
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Figure: LDPE Reactor

Model Development
Material, energy, and population balances were developed for all three
reactor zones yielding a system of 21 ODEs with state vector

x = [I M Mt T µ0 µ1 µ2]
T

where, for example

T = [T1 T2 T3]

The controlled outputs (zk), measurements (yk), and control inputs (uk)
used here are:

zk = yk =
[

T Mw
]T

uk = [qf If]
T

where,

Mw = M0 (µ23/µ13)

Controller Formulation

NMPC is based on the repeated solution online of a finite-horizon optimal
control problem at each sampling instance.

The control algorithm can be divided into two different NLPs, (i) Regulator,
and (ii) Target Calculator.
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Figure: Schematic of the control structure

Regulator
The regulator NLP calculates ‘optimal’ state, control profiles which
minimize a given (usually) quadratic cost function.

Only the first control input (uj) is applied to the plant. The remaining state,
control profile is used to initialize the next Regulator NLP.

min
x,u

‖zj+P − zt, j‖
2
P +

j+P−1
∑

k=j

‖zk − zt, j‖
2
Q + ‖uk − ut, j‖

2
R + ‖∆uk‖

2
S

subject to:
xk+1 = f (xk, uk, pk, 0, tk), yk = h(xk, pk, tk), zk = g(yk)

xL, uL, ∆uL ≤ xk, uk, ∆uk ≤ xU, uU, ∆uU

uk = uM−1 ∀k = M, M + 1, . . . , P

Target Calculator
The target calculator NLP identifies steady-state targets for the states,
controls that satisfy, or (if impossible) approximately satisfy the controlled
output setpoint.

min
xt, j,ut, j,η

1
2η

TQη + qTη + 1
2∆uT

t, jR∆ut, j

subject to:
xt, j = f (xt, j, ut, j, pj, 0, tj), yt, j = h(xt, j, pj, tj), zt, j = g(yt, j)

zt, j − η ≤ zs ≤ zt, j + η

xL, uL ≤ xt, j, ut, j ≤ xU, uU

η ≥ 0

State Estimation

Unscented Kalman filtering (UKF) was employed to estimate states (x̂k)
and integrating disturbances (p̂k) from measurements.

The UKF does not require Jacobians to be provided, unlike the extended
Kalman filter (EKF), which makes its implementation very rapid, as
Jacobians are hard to evaluate for polymerization models.

Previous research has proven that UKF gives higher-order accuracy state
estimates than EKF which has traditionally been used in chemical
engineering.

Unfortunately, due to space constraints, technical details on the UKF
methodology are omitted here.

Simulation Results

The finite-horizon optimal control problem was discretized using orthogonal
collocation on finite elements (OCFE), and the resulting NLP was solved
using the feasible-path GRG code CONOPT.

Simulations to test the controller performance were performed in Matlab.
The states, inputs, and outputs were transformed to a ‘scaled-deviation’
form to improve conditioning of the controller NLPs.

The control interval chosen was 1min long. Prediction horizon P = 6 and
control horizon M = 4 was found to give acceptable results.

Response to Polymer Grade Change
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Figure: Comparison of temperature profile (left) and weight-averaged molecular weight
(right) responses to a polymer grade change for NMPC (red) and linear MPC (blue)
controllers. Note: No setpoint change to the temperature profile.

Response with Plant-Model Mismatch
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Figure: Comparison of temperature profile (left) and weight-averaged molecular weight
(right) responses to a sudden unmeasured +7 ◦C rise in feed temperature for the nominal
(red) and plant-model mismatch (blue) cases. The mismatch used here was a +5% increase
to some rate constants in the ‘internal’ nonlinear model.

Conclusions

NMPC was shown to be superior to linear MPC in polymer grade change
situations, though the difference is more subtle for regulatory control
(results not shown here).

The results also show that the NMPC controller performs well even in the
presence of reasonable plant-model mismatch.
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