

Polyacrylonitrile-Modified Starch Nanoparticles by Cerium (IV)-Promoted Grafting

Joanne Fernandez, Dr. Mario Gauthier IPR Symposium 2017 May 3, 2017

(Confidential)

BACKGROUND

o Starch

- Several advantages: Biocompatible, renewable and biodegradable
- Hypothesized structure of a starch nanoparticle (SNP)

Graft Copolymers

- Can display characteristics of two distinct polymer phases
- May display micelle-like properties

S Bloembergen, IJ McLennan, J Van Leeuwen, DI Lee, *PTS Adv. Coating Fund. Symp.*, **2010**, 1. A Rudin, *The Elements of Polymer Science and Engineering*, Academic Press: Oxford, 1998.

RESEARCH GOALS

- Synthesize graft copolymers from starch nanoparticles by cerium (IV)promoted grafting
- Determine the reaction parameters/conditions to:
 - Vary the starch and graft polymer contents
 - Control the hydrophilic-hydrophobic balance
- Characterize the modified starch nanoparticles

S Bloembergen, IJ McLennan, J Van Leeuwen, DI Lee, PTS Adv. Coating Fund. Symp., 2010, 1.

```
(Confidential)
```

EXPERIMENTAL PROCEDURE

• Synthesis of modified SNPs (mSNPs) with Cerium (IV)

- Grafting from technique
- Homopolymerization is significantly reduced
- Redox reaction with hydroxyl-containing polymers

• Reaction Scheme:

(Confidential)

RESULTS

• Characterization Techniques

• ¹H NMR Spectroscopy

(Confidential)

RESULTS

• Characterization Techniques

- Atomic Force Microscopy
 - Degradation of mSNPs with MS = 5.0
 - Hollow PAN shell obtained

Scale = 500 nm

Scale = $2 \mu m$

Thank you!