Solving Polymer Processing Problems with Computer Simulation

John Perdikoulias Compuplast Canada Inc.

Objectives

- Demonstrate the application of CAE/CFD/Simulation in polymer processing
- Show how simulation can be used to troubleshoot/optimize a process/design
- Explain certain observations or phenomena with the aid of simulation

Problem: Particles/Gels in Film Sample

• In this system, periodic "showers" of gels or particles were observed in the film sample.

Film/Sheet Extrusion

Comprehensive Tests with the Macro Glass Window Extruder

Song, Perdikoulias and Planeta, ANTEC 2000

Photo of Extruder Screw

• The screw used to produce the film had a noticeable discoloration in the feed and compression region.

Comprehensive Tests with the Glass Window Extruder

LDPE 50 RPM @ W2 & W3, melt @ ~ 17D

Solid Bed Break-Up

• Improper screw design results in solid bed break-up and there is no mixer to compensate

Define: Solid Bed Ratio

SB Width

Channel Width

- Ratio of Solid bed width
 to Channel Width Solid Bed
- Indication of melting Ratio capability of the screw

Compuplast[®] Virtual Extrusion LaboratoryTM Extruder Simulation

Analysis of Solid Bed Ratio

Simulation indicates that the Solid bed ratio does not reduce gradually as preferred but actually increases near center of screw.

Solution: Modify Process Conditions, Change Material or Screw Design to achieve better melting performance

Problem: Polymer Degradation

• Screen Changer

Degradation SCREW / BARREL / SCREENCHANGER

Original Shape

Shear stresses inside the flow domain

0.333

<u>S</u>et

X: 31.3312

Y: 66.9001

35.6456

Explanation

Close

New Shape

Shear stresses inside the flow domain

Polymer Degradation Solution

- Ensure adequate shear stress in all flow channels.
 - Proper Channel Design
 - Proper Operation Conditions

Problem: Periodic Lines in Tubular Film Bubble

• Lines appear as a visual defect in film produced on a spiral mandrel type die.

Spiral Mandrel Dies

- Commonly used for tubular (blown) film production since 1950's.
- In more recent years applied to pipe and blow molding dies

Spiral Mandrel Flow Video

3D FEM - Pressure Drop

3D FEM - Shear Stress

3D Flow Analysis

• Velocity contours for 2/3 of the die and path line seed locations

3D FEM Spiral Die Simulation

Objective of Profile Extrusion

- Maximize Profits
- Maximize Production Rate
- Minimize Design Time
- Minimize Development Time

Not This

Example

B-SIM, Blow Molding Simulation Software

Accuform, Czech Republic

Extrusion Blow Molding Fuel Tank

Stretch Blow Molding (Bottle)

Stretch Blow Molding

• Automatic optimization of the parison thickness profile:

$$t_{i+1}^{e\,\text{init}} = t_i^{e\,\text{init}} \left[1 - C\left(t^{e\,\text{final}} - \overline{t}^{\,\text{final}}\right) / \overline{t}^{\,\text{final}}\right]$$

• Automatic optimization results - the final thickness distributions:

• Automatic optimization results - the final thickness distributions:

• Original and optimized initial thickness profile of the parison:

• Original and optimized initial thickness profile of the parison:

Parison Design Comparison

T-SIM, Thermoforming Simulation Software

Accuform, Czech Republic

Thermoforming Process

• Characterized by large deformations of polymeric materials

Deformation field visualized by an initially square grid

Positive forming

Negative forming with undercuts

D:\T-SIM\Undercut\Undercut.TFC: Rec. 42 of 42.

Effect of temperature distribution

Uniform initial temperature (160°C)

Final thickness profile

Effect of temperature distribution

Optimized initial temperature profile (152 - 162°C)

Final thickness profile

Webs or Wrinkles

• T-SIM used as a web prediction tool

Courtesy of Vyvaplast s.r.o, Czech Republic

Case study II

• Simulation in T-SIM predicts several webs (wrinkles)

Comparison

 Comparison with a real product shows a very good agreement

Comparison of thickness distribution for two different plugs

Comparison of thickness distribution for two different plugs

Image Distortion

Deformed sheet with image

Preprinted flat sheet

Reverse engineering of image deformation

Pre-distorted image, predicted by T-SIM

Image on final product

Moldex3D/Solid Innovative True 3D Simulation for Plastics Injection Molding

CoreTech System Co., Ltd. http://www.Moldex3D.com

Why 3D Analysis ?

 Realistic simulation with minimum model simplification.

Upper Phone Cover

Moldex3D Flow/Filling

Moldex3D-Flow: Cover Part

Slicing at 0.00X+0.00Y+1.00Z=-42.06

Moldex3D-Warp:Cover Part

Application: Wrench Moldex3D/Solid-I2ABAQUS

Model Summary

- Introduction
 - Thickness 3.1 ~ 12.3 mm
 - Length 227.7 mm
 - Width 49 mm
- Material
 - PA66 \ ORGALLOY
 RS6630 \ ATO (30%GF)
- Process Condition
 - Filling Time 1.5 Sec
 - Melt Temperature 300
 - Mold Temperature 70

- Injection Analysis Results
 Filling
 - Melt Front
 - Temperature Distribution
 - Warpage
 - X-Displacement
 - Y-Displacement
 - Z-Displacement
- Structure Analysis results
 - Stress
 - Strain
 - Displacement

Injection Simulation: Melt Front

Injection Simulation: Temperature

Injection Simulation: Fiber Orientation

□Fiber Orientation is the fiber orientation vector distribution of plastic melt at EOF.

□1/3 means the fibers exhibit an random orientation; 1 means the fibers are 100% oriented. The higher value means the fiber is highly oriented over the region by the flow field.

□Fiber orientation effects not only the shrinkage rate but also the strength of the part.

Injection Simulation: Warpage

Structure analysis: Link to Abaqus

- Model preview
- Pre-process
 - Load
 - Constraint
 - Others

Interfacing Function	Option	×
<u>_Warpage Output</u> Interface ———		
ABAQUS	🗖 Ansys	🗖 LSDyna
MSCNastran	🗖 NENastran	
Output to :		
C:\		<u></u>
Cutput as high order element		
	OK	Cancel

Structure analysis: Boundary Condition

Structure analysis: Deformation

Fiber-filled molded part has small deformation

Concluding Remarks

- Process simulation provides more information for correlation between process conditions and production problems
- Simulation gives new insight into problems, which can lead to faster and more precise solutions
- Simulation offers the possibility for precise process/design optimization

Stop Guessing....Start Simulating!

THANK YOU!!!

Questions?

John Perdikoulias www.COMPUPLAST.net

jp@compuplast.net

