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Reaction Mechanism and Moments
Dormant living exchange 

(monomeric alkoxyamine)
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Fully Mechanistic Model (FMM)
Prior state of the art
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FMM Updates and ImprovementsFMM Updates and Improvements
• Added controller
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D-Optimal Design ApplicationsD Optimal Design Applications

• The D-optimality 
criterion (i.e., 
maximization of 
the determinant of 
X’X) can be used 
to select the next 
best experiments 
to be run for a 
process
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Model and Design Applicationsg pp
• Based on prior Level T (°C) [I]0 (M) [N]0 (M)

experimental trials Low 120 0.036 0.058

High 130 0.072 0.086

• Previous Bayesian approach compared with D-
optimality results (with decoded [N]0/[I]0 Ratio)

Experiment
Bayesian Design D-Optimal Design
T [I] [N] Ratio T [I] [N] Ratio

First Sequence
of Two Runs

1 -1 1 -1 0.81 -1 1 -1 0.81
2 1 1 -1 0.81 1 1 -1 0.81

S d S 3 1 1 1 1 19 0 6 1 1 1 19Second Sequence 
of Two Runs

3 -1 1 1 1.19 -0.6 1 1 1.19
4 1 1 1 1.19 0.2 0.6 0.4 1.19
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