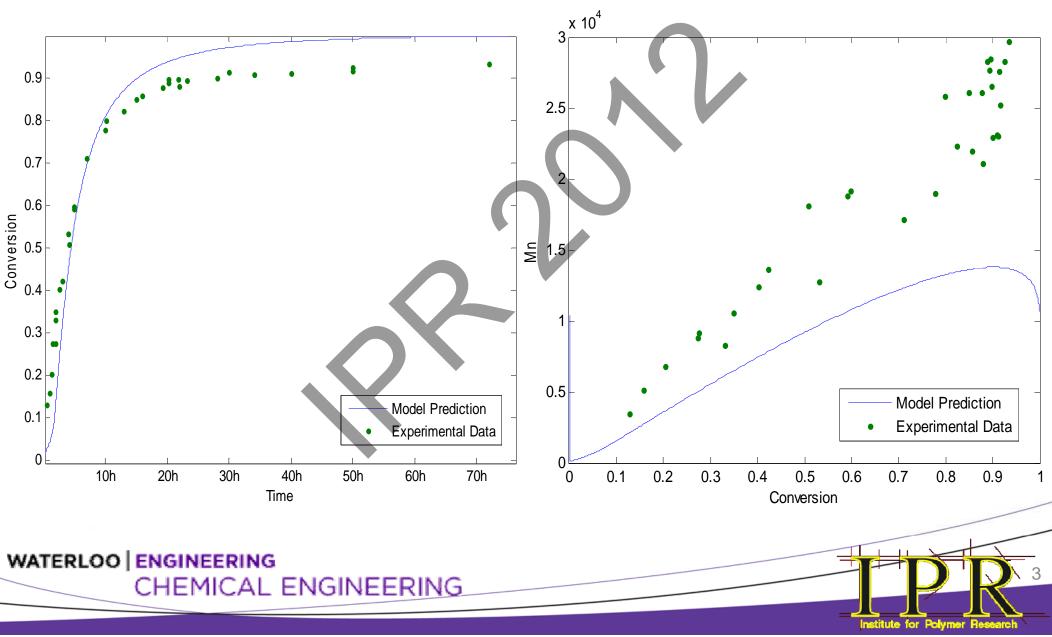
Modelling insights into the nitroxide-mediated radical polymerization of styrene

Mark D. Hazlett Institute for Polymer Research Department of Chemical Engineering University of Waterloo Supervisor: Prof. A. Penlidis

WATERLOO | ENGINEERING CHEMICAL ENGINEERING Institute for Polymer Research

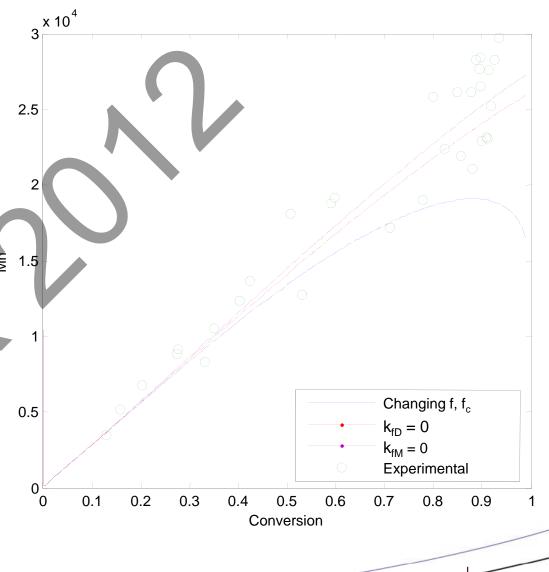

Reaction Mechanism and Moments

Description	Step	Dormant living exchange (monomeric alkoxyamine) $M^{\bullet} + NO_x \stackrel{\bullet}{\longrightarrow} MNO_x$
Chemical initiation	$I \xrightarrow{k_d} 2R_{in}^{\bullet}$	Dormant living exchange $R_r^{\bullet} + NO_x^{\bullet} \xrightarrow{k_a}{k_a} R_r NO_x$
Nitroxyl ether	k_a	(polymeric alkoxyamine) $R_r + RO_x = k_{da} + R_r RO_x$
decomposition	$NO_E \xleftarrow{\overset{k_{a2}}{\longleftarrow}} R_{in} + NO_x$	Alkoxyamine decomposition $MNO_x \xrightarrow{k_{decomp}} M + HNO_x$
Mayo dimerization	$M + M \xrightarrow{k_{\dim}} D$	
Thermal initiation	$M + D \xrightarrow{k_{i_a}} D^{\bullet} + M^{\bullet}$	Rate enhancement reaction $D + NO_x^{\bullet} \xrightarrow{k_{h3}} D^{\bullet} + HNO_x$
First propagation		Termination by combination $R_r^{\bullet} + R_s^{\bullet} \xrightarrow{k_{tc}} P_{r+s}$
(primary radicals)	$R_{in}^{\bullet} + M \xrightarrow{k_p} R_1^{\bullet}$	Termination by
First propagation	$M^{\bullet} + M \xrightarrow{k_p} R_1^{\bullet}$	$R_r + R_s \longrightarrow P_r + P_s$
(monomeric radicals)	$M + M \longrightarrow K_1$	disproportionation
First propagation	$D^{\bullet} + M \xrightarrow{k_p} R_1^{\bullet}$	Transfer to monomer $R_r^{\bullet} + M \xrightarrow{k_{fM}} P_r + M^{\bullet}$
(dimeric radicals)	$D + M \longrightarrow K_1$	Transfer to dimer $R_r^{\bullet} + D \xrightarrow{k_{fD}} P_r + D^{\bullet}$
Propagation	$R_r^{\bullet} + M \xrightarrow{k_p} R_{r+1}^{\bullet}$	Moments used for MW estimation:
	, , , , , , , , , , , , , , , , , , , ,	$\lambda_i = \sum_r r^i R_r \delta_i = \sum_r r^i R_r ON_x \mu_i = \sum_r r^i P_r$
RLOO		

2

CHEMICAL ENGINEERING

Fully Mechanistic Model (FMM) Prior state of the art



FMM Updates and Improvements

- Added controller efficiency f_c, allowed for f and f_c to change with conversion
- Removal of chain transfer to dimer and then monomer reactions
- These changes led to improved agreement with experimental data

CHEMICAL ENGINEERING

WATERLOO ENGINEERING

D-Optimal Design Applications

X'X vs. Conversion and Ratio for Simplified MW Model The D-optimality criterion (i.e., 0.005 maximization of the determinant of 0.0045 X'X) can be used 0.004 |X'X| to select the next 0.0035 best experiments 1.42 0.003 1.25 to be run for a 1.08 0.0025 0.92 [TEMPO]/[BPO] process 0.27 0.34 0.41 0.48 0.69 0.76 0.83 0.9 Ratio 0.55 Conversion

WATERLOO | ENGINEERING CHEMICAL ENGINEERING

Model and Design Applications

 Based on prior experimental trials

Level	T (°C)	[I] ₀ (M)	[N] ₀ (M)
Low	120	0.036	0.058
High	130	0.072	0.086

 Previous Bayesian approach compared with Doptimality results (with decoded [N]₀/[I]₀ Ratio)

Experiment		Bayesian Design				D-Optimal Design			
		T	[1]	[N]	Ratio	Т	[1]	[N]	Ratio
First Sequence	1	-1	1	-1	0.81	-1	1	-1	0.81
of Two Runs	2	1	1	-1	0.81	1	1	-1	0.81
Second Sequence	3	-1	1	1	1.19	-0.6	1	1	1.19
of Two Runs	4	1	1	1	1.19	0.2	0.6	0.4	1.19

WATERLOO | ENGINEERING CHEMICAL ENGINEERING

