

The Evaluation of Numerical Models for **Spiral Die Simulations**

Matthew Wurtele, Dr. Costas Tzoganakis Department of Chemical Engineering, University of Waterloo

Introduction

Spiral Dies¹

- Dies used to produce an annulus of resin
- Most popular die used for film extrusion
- Films are drawn in the axial direction and blown outwards in the radial direction to decrease the thickness

Figure 1: Spiral Die

Compuplast VEL

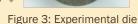

 Simulates extrusion processes for improving designs, process optimization or for education and training

Figure 2: Spiral die 3D simulation

Methods

Experimental Procedure

- Maintain process temperature while varying shear rate
- Quench cool resin, measure thickness variation and compare to simulation predictions

Solvers

- Standard (2D) and Expert (3D) solvers have been developed
- Advanced solver has aspects of both

Figure 4: Thickness variation predictions (Top: Standard, Bottom: Advanced)

Dow Chemical Engage Resins

- Linear polyolefin resins which allow for higher shear rates to be investigated
- Varying MFI and specific gravity allows the assessment of how the software interprets these changes

Resin	MFI (g/10 min)	Specific Gravity
8100	1	0.870
8200	5	0.870
8450	3	0.902
8480	1	0.902

Project Objectives

- To determine which model yields the most accurate simulation
- To determine if the Advanced model yields a good compromise between accuracy and computation time

Table 1: Resin property summary²

Dr. John Perdikoulias Compuplast International Inc.