MODELING OLEFIN POLYMERIZATION USING MONTE CARLO SIMULATION: DETAILED COMONOMER DISTRIBUTION

Mohammad Al-Saleh, Leonardo C. Simon

Institute for Polymer Research, Department of Chemical Engineering University of Waterloo, 200 University Av. W., Waterloo, ON, Canada, N2L 3G1

Outline

> Objectives

- > Introduction
 - Stochastic Modeling & Monte Carlo Simulation
 - > Polyolefins
- Mathematical Model
 - Copolymerization Kinetic Equations
 - Copolymerization Schematic Flow Chart
- Simulation Results
 - Chain Length & Segment Length Distribution
 - Triad Distribution
 - ➢ Case Study
 - Triads Relative Intensities of ¹³C-NMR Spectra
- Future Work
- Conclusion

Objectives

- To build a Monte Carlo model to describe the polymerization mechanisms of olefin copolymerization using single-site coordination catalyst
- To predict detailed polymer microstructure:
 - The complete chain length distribution;
 - Polydispersity;
 - Average comonomer (B) composition FB;
 - Comonomer composition distribution as function of chain length;
 - Monomer (A) and comonomer (B) <u>segment length</u> distribution as function of chain length;
 - Average triads distribution;
 - Triad distribution as a function of chain length;

Introduction

Stochastic Modeling & Monte Carlo Simulation

- Monte Carlo modeling is a convenient method of modeling polymer reaction mechanism and is widely used in polymerization systems (use of probabilities)
- It is useful specially when analytical solutions are not available

<u>Polyolefins</u>

- The basic properties of PE $(-CH_2CH_2-)_n$ are determined by the molecular structure
- Depends on degree of crystallinity, degree of polymerization, average molar mass and molar mass distribution

Copolymer-Kinetic Equations-Probabilities Calculations

Rate of Propagation:
$$P_{r=1}^{\star}$$
 + n M \longrightarrow $P_{r=1+n}^{\star}$ $R_{pA} = k_{pA} [P_r^*][A]$ $R_{pB} = k_{pB} [P_r^*][B]$ Rate of Termination: $P_r^{\star} \longrightarrow P_H^{\star} + \overline{D_r}$ $R_{tA} = k_{tA} [P_r^*]$ $R_{tB} = k_{tB} [P_r^*]$

The probability of propagation:

$$p_{p} = \frac{(R_{pA} + R_{pB})}{(R_{pA} + R_{pB}) + (R_{tA} + R_{tB})} = \frac{(k_{pA} [P_{r}^{*}][A] + k_{pB} [P_{r}^{*}][B])}{(k_{pA} [P_{r}^{*}][A] + k_{pB} [P_{r}^{*}][B]) + (k_{tA} [P_{r}^{*}] + k_{tB} [P_{r}^{*}])}$$

Knowing that, the number average chain length:

$$r_n = \frac{R_p}{R_t} = \frac{(R_{pA} + R_{pB})}{(R_{tA} + R_{tB})}$$

Copolymer-Kinetic Equations-Probabilities Calculations

The probability of propagation is related to the number-average chain length:

$$P_{p} = \frac{R_{p}}{R_{p} + R_{t}} = \frac{1}{1 + \frac{R_{t}}{R_{p}}} = \frac{1}{1 + \frac{1}{r_{n}}} \approx 1 - \frac{1}{r_{n}}$$

And, the probability of chain termination is related to the number-average chain length by:

$$P_{t} = \frac{R_{t}}{R_{p} + R_{t}} = \frac{(R_{tA} + R_{tB})}{(R_{pA} + R_{pB}) + (R_{tA} + R_{tB})} = \frac{k_{tA} [P_{r}^{*}] + k_{tB} [P_{r}^{*}]}{(k_{pA} [P_{r}^{*}] [A] + k_{pB} [P_{r}^{*}] [B]) + (k_{tA} [P_{r}^{*}] + k_{tB} [P_{r}^{*}])}$$

$$P_{t} = \frac{R_{t}}{R_{p} + R_{t}} = \frac{1}{\frac{R_{p}}{R_{t}} + 1} = \frac{1}{r_{n} + 1} \approx \frac{1}{r_{n}}$$

Copolymerization Schematic Flow Chart

Simulation Model Inputs-Outputs

 k_{tA}

Model Parameters:

- Probability of termination (*Pt*)
- Probability of adding the comonomer (*PB*)
- Concentration of monomer [A]
- Concentration of comonomer [B]
- Concentration of the active species, $[P_r^*]$
- Monomer A propagation constant, k_{nA}
- Comonomer B propagation constant, k_{PB}
- Monomer A termination constant,
- Comonomer B termination constant, k_{tB}

Model Input:

- Total number of polymer chains
- Number average chain length (*rn*)
- Average fraction of comonomer (*FB*)
- Seed to initiate the random number

Model

Molecular weight

Model Output:

Polydispersity

Chain length distribution

function of chain length (*r*)

distribution as function of (*r*)

• Triad distribution as a function of (*r*)

Average triads distribution

Average comonomer (B) composition

Comonomer composition distribution as

Monomer and comonomer segment length

- Degree of polymerization
- Branching
- Crystallinity
- (tensile strength, impact toughness, melting temperature)

Triads Relative Intensities of ¹³C-NMR Spectra

Nomenclature and ¹³C-NMR Chemical Shift Assignments

Nuclear Magnetic Resonance spectroscopy is a very powerful technique for polymer characterization

A = ethyleneB = 1-hexene

LLDPE = Linear Low Density Polyethylene

Tabulated Intensity Equations Chemical Shifts Assignments

Calculated intensities with respective chemical shift assignments ($r_n = 1008$ and $F_p = 5\%$)									
	Range	e (ppm)	-	1B ₄					
Region	from	to	Contributing Carbons	2B ₁₄					
А	39.5	42	αα, Methylene	TA EHEE 3B4 86+ EHEE EHEE					
В	38.1		(Methine) _{EHE}	TE Y ⁶⁺					
С	33	36	(Methine) _{EHH+HHE} , (Methine) _{HHH} , $4B_4$, $\alpha\gamma$, $\alpha\delta$	TC CH _{EHE} HEEE					
D	28.5	31	$δ^+δ^+$, $3B_4$, γγ, γ $δ^+$	τι					
Е	26.5	27.5	$\beta \delta^+$	ТЕ					
F	24	25	ββ						
G	23.4		2B ₄	TC HHREEHHE HEEK HHRH HHRE BB					
н	14.1		1B ₄						

Chain Length & **Triad Distribution Segment Length** Distribution Simulation Results **Triads Relative Intensities of ¹³C-NMR Case Study** Spectra

Number Fraction of Chains as a Function of Chain Waterloo Length and Comonomer Distribution

Fraction of Monomer Segment Length, $A_n (r_n = 5004, F_B = 3\%)$

Fraction of Comonomer Segment Length $B_n (r_n=5004, F_B=3\%)$

Waterloo Distribution of Segments B_{1-6} , A_{1-19} , $A_{>19}$ and total A_n as a Function of Chain Length (r_n =5004, F_B =3%)

Segment < 20 monomer units will not crystallize

(Haag et. al., 2003)

Triad Distribution as a Function of Chain Length $(r_n=5004, F_B=3\%)$

Waterloo

Kinetic parameters used in the case study (representing four different reactor conditions)

	k _{pA} (L/mole.s)	k _{pB} (L/mole.s)	k _{tA} (L/mole.s)	<i>k</i> _{tB} (L/mole.s)	P_t	P_p	r_n	P_{B}
R ₁	1210	1910	2.70	1.10	0.00099	0.99901	1008	0.05
R_2	2160	2700	1.25	1.00	0.00033	0.99967	3001	0.04
R_3	2200	2040	0.79	0.57	0.00020	0.99980	5004	0.03
R_4	3900	2390	0.92	0.78	0.00014	0.99986	7024	0.02
	-							

 $[Pr^*]=10 \times 10^{-6} \text{ (mole/L)}, [A]=3 \text{ (mole/L)}, [B]=0.1 \text{ (mole/L)}$

Effect of product mixing from reactor1 to reactor 4 on the polymer parameters

	<i>r</i> _n	r_w	PDI	F _B
R ₁	1008	2001	1.98	5.0%
$R_1 + R_2$	2006	4994	2.49	4.5%
$R_1 + R_2 + R_3$	3007	7777	2.59	4.0%
$R_1 + R_2 + R_3 + R_4$	4009	10513	2.62	3.5%

Kinetic parameters used in the case study after mixing (representing the products with $r_n = 1008$ to 4009 for mixed product from reactor 1 to reactor 4)

	k _{pA}	$k_{\rm pB}$	$k_{\rm tA}$	$k_{\rm tB}$	P_t	P_{p}	r_n	$P_{\scriptscriptstyle B}$
	(L/mole.s)	(L/mole.s)	(L/mole.s)	(L/mole.s)	•	1		Ъ
R ₁	1210	1910	2.70	1.10	0.00099	0.99901	1008	0.05
$R_1 + R_2$	1100	1550	0.92	0.80	0.00050	0.99950	2006	0.045
$R_1 + R_2 + R_3$	1308	1650	0.79	0.57	0.00033	0.99967	3007	0.04
$R_1 + R_2 + R_3 + R_4$	2220	2400	0.94	0.78	0.00025	0.99975	4009	0.035

[Pr*]=10 10⁻⁶ (mole/L), [A]= 3 (mole/L), [B]= 0.1 (mole/L)

From reactor 1 with 250,000 chains to reactor 4 with 1,000,000 chains

Number fraction of monomer segments for A_1 to A_{19} from reactor 1 with 250,000 chains to reactor 4 with 1,000,000 chains as function of chain length

Triad Distribution

ABA triad distribution from reactor 1 with 250,000 chains to reactor 4 with 1,000,000 chains as function of chain length (varying r_n , F_B)

BBB triad distribution from reactor 1 with 250,000 chains to reactor 4 with 1,000,000 chains as function of chain length (varying r_n , F_B)

Triads Relative Intensities

The relative intensities of ¹³C-NMR spectra for the branching regions

Fractionated Chain Length Population

Triads Relative Intensities

Table-7 Fractionated population classes for the relative intensities with respective regions of reactor 4 after mixing the products from reactor 1 to 4 ($R_1+R_2+R_3+R_4$) according to chain length (r)

Region	Low r <1100	Medium $1100 < r < 10100$	High $r > 10100$	
A	0.109%	0.080%	0.070%	
В	0.080%	0.059%	0.053%	
С	0.605%	0.446%	0.381%	
D	98.595%	98.964%	99.107%	
E	0.083%	0.061%	0.052%	
F	0.074%	0.054%	0.045%	
G	0.227%	0.167%	0.146%	
Н	0.227%	0.167%	0.146%	
Ľ	0.20% 0.10% 0.00% A	B C E Region		Low, r<1100 Medium, 1100< r <10100 High, r >10100

Future Research Work

Conclusions

- A For copolymerization, the model was able to predict chain length and comonomer sequence distribution with great detail.
- A In the case of copolymerization the fraction of monomer B incorporated in the polymer chain was not dependent on the size of the chain, which is in agreement with the polymerization mechanism.
- A The input information for running the model can be obtained from experimental polymer analysis or through the reaction kinetics.

Conclusions

- **∞** The input information is used to calculate model probabilities that are then used to determine each event of the polymerization mechanism.
- ✿ The model demonstrated great ability in predicting the detailed segment length distribution as a function of chain length, as well as the relative intensity for the peaks of the ¹³C-NMR.
- ℜ Knowing the segment lengths and triads distribution as a function of chain length is an advantage that allows us to study the polymerization mechanism and the properties of the polymer.