## RELATIONSHIPS BETWEEN CHEMICAL AND MECHANICAL PROPERTIES OF POLYETHYLENE *STRUCTURAL APPLICATIONS AND MECHANICAL MODELLING*

Maria Anna Polak Department of Civil Engineering University of Waterloo

**Alexander Penlidis** Department of Chemical Engineering University of Waterloo

IPR Symposium May 2006

# OUTLINE

- Motivation for the work
- Research objectives
- Organization of the project
- Background information
- Experimental and theoretical work:
  - Chemical,
  - Micromechanical
  - Macromechanical
- Summary and Conclusions

# **MOTIVATION FOR THE WORK**

- Installation of polyethylene pipes using trenchless methods
- Example Back Ream/Pull Back phase of horizontal directional drilling



# TRENCHLESS ENGINEERING RESEARCH PROGRAM:

- Field testing of the pipes
- Development of a numerical predictive model for pulling forces: PipeForce 2005



Installation of Instrumented Test Pipe

## **GOALS OF THE RESEARCH PROGRAM**

- Model for predicting *mechanical* properties of polymers based on *chemical* composition
  - understanding of the relationship between the chemical processes of producing a polymer and its mechanical constitutive properties

## Polymer applicability for structural applications

- Production of materials for specific applications.
- Specification of appropriate manufacturing and molding processes when the required mechanical properties are known.

# **OVERVIEW OF THE PRESENTED RESEARCH PROGRAM**

### Chemical analysis of polyethylene

- Relating chemical to rheological and mechanical properties
- Creation of 'maps' of relations between microstructure and mechanical properties.
- Micromechanical properties and modelling of polyethylene
  - Modifying the existing constitutive equations to incorporate damage.
- Macromechanical properties and modelling of polyethylene
  - Development of time dependent material modelling formulations for finite element analysis





## **POLYETHYLENE PHASES**

Polyethylene structure



## **STRUCTURE OF POLYETHYLENE**



Semicrystalline polymer

## **DEFORMATION MECHANISMS**

#### **Polyethylene structure**



Unstrained inclusion

### Elongation and tilting Fragmentation

# FAILURE MECHANISMS



# **STRESS CRACKING OF POLYETHYLENE**

- Increase in molecular weight (MW) increases strength
- Increase in short chain branching (SCB) increases ESCR
- Bimodal polyethylene
  - More tie-molecules and chain entanglements
  - Better mechanical properties

# CHEMICAL PROPERTIES OF HIGH DENSITY POLYETHYLENE

Doctoral Candidate: Joy Cheng Chemical Engineering

**Objectives:** 

Relationships between chemical and mechanical properties for polyethylene

Produce 'maps' describing relations between key micro molecular and physical/mechanical properties

Develop method for predicting slow crack growth

# **CHEMICAL PROPERTIES**

- Molecular Weight
- Molecular Weight Distribution
- Short Chain Branching
- Long Chain Branching
- Crystallinity
- Density

# **EXPERIMENTAL TECHNIQUES**

| Test Methods                                        | Material Properties                                                   |  |  |
|-----------------------------------------------------|-----------------------------------------------------------------------|--|--|
| GPC<br>(gel permeation chromatography)              | Molecular weights and distribution<br>Long chain branching indicators |  |  |
| DSC<br>(differential scanning calorimetry)          | Percentage crystallinity                                              |  |  |
| CRYSTAF<br>(Crystallization analysis fractionation) | Short chain branching and its distribution                            |  |  |
| C <sup>13</sup> NMR<br>(nuclear magnetic resonance) | Short/Long chain branching                                            |  |  |
| NCLT<br>(notch constant load test)                  | ESCR (environmental stress cracking resistance)                       |  |  |
| Tensile creep                                       | Tensile properties                                                    |  |  |
| Capillary rheometry                                 | Molecular weight and distribution<br>Long chain branching level       |  |  |
| Oscillating shear analysis                          | Long chain branching, shear modulus, shear viscosity                  |  |  |

# ExxonMobil resins

| Chemical Properties                                        | PE1    | PE2    | PE3    |  |  |
|------------------------------------------------------------|--------|--------|--------|--|--|
| Density (company)                                          | 0.95   | 0.963  | 0.963  |  |  |
| Melt index (company)                                       | 0.3    | 0.73   | 0.25   |  |  |
| Melt point (°C) (measured)                                 | 130.1  | 134.8  | 134.5  |  |  |
| % crystallinity (measured)                                 | 53.68% | 56.32% | 59.81% |  |  |
| SCB (/1000C) (measured)                                    | 29.03  | 3.33   | 2.85   |  |  |
| LCB (/1000C) (measured)                                    | 1.18   | 1.45   | 1.18   |  |  |
| Mechanical Properties                                      |        |        |        |  |  |
| Tensile modulus (MPa) (company)                            | 1790   | 2620   | 2324   |  |  |
| Environmental Stress Crack<br>Resistance (hours) (company) | 65     | 10     | 15     |  |  |

## **BRANCH MEASUREMENTS**

### SCB

| Resin | SCB content (75°C -85°C) | ESCR (hours) |
|-------|--------------------------|--------------|
| 2     | 0.1631                   | 10           |
| 3     | 0.1632                   | 15           |
| 1     | 0.3438                   | 65           |

### LCB

| Resin | LCB (/1000C) | Tensile modulus<br>(Mpa) |
|-------|--------------|--------------------------|
| 1     | 1.18         | 1790                     |
| 3     | 1.18         | 2340                     |
| 2     | 1.45         | 2620                     |

# RELATING RHEOLOGICAL PROPERTIES WITH MW and MWD

#### **Oscillatory shear analysis**



•Polymer with higher MW shows a higher intersection point.

•Increase in breadth of MWD is shown by the intersection moving towards the right of the graph

•In mechanical analysis, resin with higher MW is expected to have better mechanical strength, while broader MWD means better processability.



MICROMECHANICAL MODELLING OF POLYETHYLENE; Damage at Large Deformations

Doctoral Candidate : Jose A. Alvarado-Contreras

**Civil Engineering** 

#### **Motivation**

To understand the interplay between the microstructure and the overall macroscopic behaviour of polyethylene. <u>Goal</u>

To develop a constitutive model to predict the mechanical behaviour of polyethylene considering the damage processes occurring at large deformations.



#### **MICROMECHANICAL APPROACH**



### **CRYSTALLINE POLYETHYLENE**

Crystalline cells





#### **CRYSTALLINE POLYETHYLENE**

Deformation mechanisms - Slip systems



Crystallographic slip systems

### **CRYSTALLINE POLYETHYLENE**

Summary - Viscoplastic model



## **AMORPHOUS POLYETHYLENE**



Idealized molecule



The eight-chain model

### **COMPOSITE INCLUSION**

Inclusion constitutive model



### DEFORMATION MECHANISMS

Stress-strain relationship



## **DAMAGE MODEL**

Stress-strain state in single crystals



### **PRELIMINARY RESULTS**

Numerical implementation of existing models

- Idealized 100% crystalline polyethylene.
- 100 randomly oriented crystals.
- Initially isotropic texture.
- Uniaxial tension and simple shear

#### **UNIAXIAL TENSION**

Stress-strain behaviour and damage evolution



#### **SIMPLE SHEAR**

Stress-strain behaviour and damage evolution



### NUMERICAL RESULTS – UNIAXIAL TENSION

Crystallographic textures in 100% crystalline polyethylene



Projection plane perpendicular to the loading direction

# MACROMODELLING OF POLYETHYLENE MATERIALS

## Doctoral Candidate: Hongtao Liu Civil Engineering

**Objective:** 

To develop a nonlinear viscoelastic model to be used in finite element analysis for polyethylene structures

# BEHAVIOUR OF POLYETHYLENE MACRO-MECHANICAL CREEP RESPONSE



### LOADING

instantaneous elastic response
delayed elastic response
viscous flow

### UNLOADING

- •instantaneous elastic drop
- delayed recovery
- •permanent (plastic) deformation

# MATERIAL TESTING

## Creep tests

- Short 24 hr (used in model calibration)
- Long 14 day, 7 day

## Tensile load rate tests

- Load(stress) rate
- Strain rate

## Complex tests

Combinations of load rate and creep

# **TEST SET-UP FOR CREEP**

- Loading is applied by dead weights through a lever
- Clip-on strain gage is used
- Strain history is recorded





## **MATERIAL TESTING**

## MTS tester





### EXPERIMENTAL CREEP RESPONSE OF FOUR POLYETHYLENES TESTED IN THE RESEARCH PROGRAM.



## EXPERIMENTAL COMPLIANCE CURVES FOR FOUR POLYETHYLENES TESTED IN THE RESEARCH PROGRAM.



**TYPICAL CREEP COMPLIANCE CURVES FOR POLYETHYLENE SUBJECT TO LOW AND HIGH LEVELS OF STRESSES.** 



# **MODEL GENERATION**

Viscoelastic Models

Integral formulation: For constant stress:

$$\varepsilon(t) = \int_{0}^{t} \psi(t - \tau) \, d\tau$$
$$\varepsilon(t) = \psi(t) \sigma$$

 Multi-Kelvin Approach; exponential functions

$$\psi(t) = \psi_{e} + \psi_{v}(t) = \frac{1}{E_{0}} + \sum_{i=1}^{n} \frac{1}{E_{i}} \left\{ 1 - \exp\left(-\frac{t}{\tau_{i}}\right) \right\}$$

$$\psi(t) = \psi_e + \psi_p(t) = \frac{1}{E_0} + C_0 t^{C_1}$$

## **MODEL GENERATION**

- Nonlinear least-squares fitting creep data
- Linear interpolation to include stress effects
- The model for a given PE is presented in a table form

$$\varepsilon(t) = \int_{0}^{t} \left\{ \frac{1}{E_{0}(\sigma)} + \sum_{i=1}^{n} \frac{1}{E_{i}(\sigma)} \left\{ 1 - \exp\left(-\frac{t-\tau}{\tau_{i}(\sigma)}\right) \right\} \right\} dt(\tau) d\tau$$



| Number of Kelvin elements |            | 3         |                |                |   |  |
|---------------------------|------------|-----------|----------------|----------------|---|--|
|                           |            | τ         | $\tau_2$       | $\tau_3$       | 3 |  |
| stress                    | E          | 500       | 10000          | 200000         |   |  |
|                           | -          | E₁        | E <sub>2</sub> | E <sub>3</sub> |   |  |
| 2.97                      | <b>650</b> | 797.3889  | 2320.3566      | 925.0882       |   |  |
| 5.97                      | 580        | 913.5936  | 1212.2605      | 695.0461       |   |  |
| 7.71                      | <b>520</b> | 1224.7911 | 1104.9922      | 385.8572       |   |  |
| 10.31                     | 500        | 1034.2045 | 694.1084       | 226.4555       |   |  |
| 12.19                     | 470        | 1128.4448 | 806.0972       | 140.6875       |   |  |

## SIMULATED CREEP TESTS



## SIMULATED AND EXPERIMENTAL CREEP CURVES FOR STRESSES OTHER THAN THE ONES USED FOR MODEL CALIBRATION.

**HDPE-PIPE** 



## RESPONSE TO TENSILE STEP-LOADING HDPE-PIPE



## TESTS AND MODELLING LOAD RATE EFFECTS Stress-Strain Relationships



## **COMPLEX LOAD HISTORIES; LOAD RATES AND CREEP**



# **RELAXATION FUNCTION FROM CREEP COMPLIANCE**

$$\varepsilon(t) = \int_{0}^{t} \psi(t-\tau) \mathscr{A}(\tau) d\tau \qquad \qquad \sigma(t) = \int_{0}^{t} \phi(t-\tau) \mathscr{A}(\tau) d\tau$$

$$t = \int_{0}^{t} \psi(t - \tau) \phi(t) d\tau$$

### Numerical procedure to calculate hereditary integral

# FINITE ELEMENT MODELLING

## **3-D APPLICATIONS**

- Isotropic and incompressible material
- Extend creep compliance (relaxation function) to 3-D elastic equations
- Using ABAQUS
  - Material User Subroutine (UMAT) can be programmed to include new material models

$$\sigma_{eff}(t) = \sqrt{(\sigma_{11}^2 + \sigma_{22}^2 + \sigma_{33}^2) - (\sigma_{11}\sigma_{22} + \sigma_{22}\sigma_{33} + \sigma_{33}\sigma_{11}) + 3(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2)}$$

$$\varepsilon_{eff}(t) = \frac{2}{3}\sqrt{(\varepsilon_{11}^2 + \varepsilon_{22}^2 + \varepsilon_{33}^2) - (\varepsilon_{11}\varepsilon_{22} + \varepsilon_{22}\varepsilon_{33} + \varepsilon_{33}\varepsilon_{11}) + 3(\varepsilon_{12}^2 + \varepsilon_{23}^2 + \varepsilon_{31}^2)}$$

## SUMMARY AND CONCLUSIONS

- Polyethylene is a nonlinear and time dependent material
- Different polyethylenes behave differently under stress and strain
- Chemical analysis, combined with its rheological testing can be used to correlate chemical and mechanical properties of PE
  - Molecular weight, molecular weight distribution and branching influence both deformation and failure of polyethylene.

# SUMMARY AND CONCLUSIONS

- Micromechanical modelling provides information on the role of physical structure of PE on the macroscopic behaviour
  - Realistic results were obtained by implementing damage mechanics concepts into viscoplastic modelling of PE
- Macromechanical modelling was presented.
  - The method can be easily used for modelling any material and can be adapted for finite element analysis

# ACKNOWLEDGEMENTS

Imperial Oil, Canada (ExxonMobil)

KWH Pipe, Canada

Nova Chemicals, Canada

Repsol, Spain

Jana Laboratories, Canada NSERC, Natural Research and Engineering Council of Canada

Canada Research Chair Program

University of The Andes, Venezuela,

Institute for Polymer Research