

Mustafa Shahwan, Ramadhane Dhib and Mehrab Mehrvar Department of Chemical Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada

INTRODUCTION

- > Many polymeric compounds that are found in wastewater effluents are toxic for the environment and the aquatic life's.
- > New compounds are being introduced to the environment, as a result of new advancements and new manufacturing technologies.
- Polymers with a molecular weight higher than 100.0 Kg/mol are not biodegradable.
- > The challenges in depolymerisation of wastewater are summarized in two points:-
- 1- The level of conversion that the process would achieve (% TOC removal).
- 2- The economic feasibility to establish a large pilot scale that efficiently treat the wastewater that possess polymers, pharmaceuticals and other toxic compounds.

WATER SOLUBLE-POLYMERS

Figure (1) : Water soluble-polymers

PVA DEGRADATION PROCESS

> The hydroxyl radicals produced from the following equation:

 $H_2O_2 \xrightarrow{\text{UV light}} 2OH^{\blacksquare}$

> The hydroxyl radicals, attacks the PVA bonds and break the polymer into smaller chunks of molecules with lower molecular weights.

 $PVA + H_2O_2 + UV \ light \rightarrow H_2O + CO_2$

- > The hydrogen peroxide is pumped through a rubber tubing towards the entrance of the photochemical tubular reactor where it mixes with the incoming PVA polymeric solution.
- > The UV light 252 nm wave length with a 14 W input power, brakes down the hydrogen peroxide oxidizer to hydroxyl radicals.

REFERENCES

1. Hamad, D. (2015). Experimental Investigation of Polyvinyl Alcohol Degradation in UV/H2O2 Photochemical Reactors Using Different Hydrogen Peroxide Feeding Strategies. 210. Toronto, Canada. 2. Hamad, D., Dhib, R., & Mehrvar, M. (2016). Photochemical Degradation of Aqueous Polyvinyl Alcohol in a Continuous UV/H2O2 Process : Experimental and Statistical Analysis. J Polym Environ, 24, 72-83. 4. Munter, R. (n.d.). Industrial Waste Water Treatment.

Dynamic Modeling by Identification Technique of PVA Solution Degradation in a Tubular Photochemical Reactor Institute for Polymer Research

REACTOR SETUP

4. H_2O_2 pump. 5. H_2O_2 Jar

Figure (2): UV/H₂O₂ polymeric (PVA), wastewater experimental setup.

PROJECT OBJECTIVES

- 1- Dynamically model the UV/H_2O_2 photochemical reactor degrading PVA, using step-change testing.
- 2- Cover all the possible non-linear regions of the process, and find the corresponding transfer functions of each nonlinear block.
- 3- Design a controller to monitor the effluent pH.
- 4- Control variable to be the H_2O_2 flow rate into the photochemical reactor.

EXPERIMENTAL METHOD

Figure (3) : Overview of procedure

ACKNOWLEDGEMENT

Thanks to my supervisors Dr. Ramadhane Dhib & Dr. Mehrab Mehrvar for their advices and insights into the MAS'c project. Thanks to department of Chemical Engineering at Ryerson University for their financial support.

. Photochemical reactor #1

- 2. PVA solution Polymeric wastewater influent tank.
- 3. PVA low volumetric flow rate pump
- 6. Photochemical reactor # 2.
- 7. Effluent tank

RESULTS

0.024 [H₂O₂]/[PVA] for 500 mg PVA/L.

- of the PVA treated solution and measured TOC exists.
- minute 86.0 in run (2) corresponding to plot(2).
- of the effluent samples decreases towards a pH value of 4.0

CONCLUSION

- possible transfer functions of process is required.
- advanced oxidation process.

 \succ It is apparent, from the data collected in plot (1) and (2), that a relationship between effluent pH

University of Waterloo

> As effluent pH approaches neutral value, 7.0, the highest TOC removal is achieved.

> Step-change was done on the system, at minutes 107 in run (1) corresponding to plot (1), and

> In plot (1) and (2), Step change from 1.0 to 0.2 $[H_2O_2]/[PVA]$, 500 mg PVA/L, results in an increase in pH of the effluent approaching neutral pH value of 7.0 and an increase in the TOC removal of the process, on the other hand a step change of 0.12 to 0.024 $[H_2O_2]/[PVA]$, results in a decrease in the pH effluent an a probable decrease in the TOC removal as it is apparent in plot (4).

 \succ The scavenging affect of hydrogen peroxide in the reaction is apparent in plot (4), as the concentration of H_2O_2 is increased by a factor of 5, the TOC removal decreases and the pH values

1- To properly control a UV/H_2O_2 depolymerization process, a thorough understanding of all

2- A dynamic experimental modeling of a the photochemical process, is an efficient tool to control an

3- Once a process is dynamically modeled, a proper PID, PI or other suitable controllers may be designed to achieve high PVA degradation, high TOC removal and neutral effluent pH.