Fluorescence Resonance Energy Transfer (FRET) in Polymer Films and Polymer

Blends

Neda Felorzabihi, Jeffrey C. Haley, Pablo Froimowicz, Ghasem R. Bardajee and Mitchell A. Winnik

Department of Chemical Engineering and Chemistry University of Toronto

> IPR Symposium, Waterloo May 15, 2007

Introduction

- Polymer blends a route to obtain new high performance materials
- Blend systems:
 - Two immiscible polymers matrix/dispersed

I am interested in core/shell structures

 I want to use core/shell 3-component blends as a means of studying partial miscibility and interfaces between the components.

Fluorescence Resonance Energy Transfer (FRET)

Long Term Goal

 To obtain information about the interface between the components of a polymer blend.

- Our group uses FRET to study polymer-polymer interfaces.
- This technique works well for block copolymers.
- It has not yet been used for the quantitative study of polymer blends.

Steps to Meet Our Goals

- 1. Study core/shell morphology development in a ternary blend.
- 2. Select the chromophores (D and A) based on spectroscopic properties.
- 3. Synthesize dye-labeled polymers.
- 4. Test our models for fitting the experimental data.
- 5. Determine key parameters.
- 6. Carry out FRET experiments on polymer blends.

1. Study core/shell morphology development in a ternary blend

Study of Core/Shell Morphology Development in PS/PMMA/HDPE Blend

>MMA and styrene for synthesizing dye-labeled PMMA and PS

PS/PMMA/HDPE Blend Preparation

- Blend Preparation
 - Solution precipitation
 - Melt mixing in a twin screw extruder (at 200 °C and 200 rpm). Then quenching the samples in cold water

PS is labeled with an HY dye,

λ_{ex} = 488 nm

80/20 (14+86) HDPE/(PS+PMMA)

Blend at 60 min. of mixing

Image depth: 7-10 μ m

Effect of Mixing Time on Morphology **Development**

80/20 (14+86) HDPE/(PS+PMMA)

Image depth: 7-10 μm

Blend System

 Using core/shell structures to study miscibility and interfaces in 3-component polymer blends by FRET

PMMA

2. Select the chromophores (D & A) based on spectroscopic properties.

Systematic Study of Fluorescence Decay of **Coumarin Dyes in Polymer Films**

I need to find the proper donor dyes for my FRET experiments.

1.E+0

0

2

4

10

12

14

⁶Time (ns)⁸

1.E+1

1.E+0

0

2

Non-Exponential decay

⁶Time (ns)⁸

10

12

14

Selected Amino-Coumarin Donor Dyes

Absorption & Emission Spectra of Coumarin Dyes in Ethyl acetate

Fluorescence Decays

Selected Donors and Acceptor Dyes

3. Synthesizing dye-labeled polymers

Characterization of Dye-Labeled PS and PMMA

- UV-vis results:
 - Dye incorporation into polymer
 HY-labeled PMMA: 0.099 mmol/g
 HY-Labeled PS: 0.0202 mmol/g
 Coum3-labeled PS=0.009 mmol/g

	HY-PS	HY-PMMA	Coum3-PS
Mn	321,000	5600	300,000
PDI	1.63	1.81	1.88
D _p	57	49	-

4. Determine Key parameters

Determination of the Förster Distance (R_0) From **Spectral Overlap Method**

Determination of Extinction Coefficient of Acceptors in Polymer Films

Beer's Law Plots for Two Acceptor Dyes

$\epsilon(\lambda)$ Spectra for R₀ Calculations

Spectral Overlap Calculation

Determination of Quantum Yields

a) Coumarin -314 in PMMA film

^{*} Jones et al., J. Phys. Letters (1983), 10, 189.

Measuring Quantum Yield using Integrating Sphere

By Gisela Schulz, S. Holdcroft, Simon Fraser University

Förster Distance for Coum-314 in PMMA & Coum-3 PS (Spectral Overlap Method)

Fluorescence Decay Measurements for Coum-314/Dispersed Red 19 in PMMA Films

Fluorescence Decay Measurements for Coum-314/Dispersed Red 19 in PMMA Films (Cont'd)

Förster Model

Fluorescence Decay Measurements for Coum-3 PS & HY-3G in PS Films

Fluorescence Decay Measurements for Coum-3 PS & HY-3G in PS Films (Cont'd)

Our Generalized Förster Model

Summary

- Core/shell morphology development within the dispersed phase for ternary polymer blend of HDPE/PS/PMMA.
 - Formation of dispersed particles of PMMA in a PS shell in a HDPE matrix upon melt mixing (t>30 min).
- Systematic study of the fluorescence decay of coumarin dyes in polymer films and solutions (In press, *J. Polym. Sci,*. *B*).
 - Many of the dye-polymer pairs exhibit exp. decays with τ_D≈3 ns. These dyes are well suited for FRET in Polymers.
- Testing our Generalized model by comparing R₀ values obtained from spectral overlap method and FRET.

Future Work

 To carry out FRET experiments on (PS/PMMA/HDPE) blends using Monte Carlo simulations.

