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 Large amount of literature since 1944.

 Reactivity ratios determined through

inaccurate linear estimation methods. 100
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Nonlinear parameter estimation techniques
Linear parameter estimation techniques

 More than 80% of publications after 1985

used statistically incorrect estimation

techniques.
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 In recent publications, these methods are still

used and inaccurate results are reported.
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 Apparently, this practice has become routine. 0
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What is the real drawback ?
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Styrene (STY) and Methyl Methacryalte (MMA) Copolymerizationy ( ) y y ( ) p y
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As stated in the literature:

“The paradox we are confronted with is that on one hand, an exceptionally useful amount of

experimental data has been gathered so far. On the other hand, that huge amount of experimental data
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often gets misinterpreted which results in coming up with unreliable reactivity ratios”
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 Main Objective

o How can these issues be improved with respect to accuracy and precision?

 Background

o Multicomponent polymerization models
o Review of the estimation method:  Error-in-Variables-Model (EVM)

 First Question: Why should we use cumulative composition models?

 Second Question: Why use binary reactivity ratios in ternary systems ? Second Question: Why use binary reactivity ratios in ternary systems ?

 Concluding remarks

F t St
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 Future Steps
IP

R 20
11



Multicomponent
polymerizations

Copolymer 
Composition data

Terpolymer
composition data

Instantaneous model Cumulative model Instantaneous model

Mayo-Lewis 
equation

Meyer-Lowry 
equation

Direct Numerical 
Integration

Alfrey-Goldfinger
equations
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Copolymer 
Composition data

Instantaneous model Cumulative modelInstantaneous model

Mayo-Lewis equation

Cumulative model

Meyer-Lowry equation Direct Numerical Integration
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Copolymer 
Composition data

Instantaneous model Cumulative modelInstantaneous model

Mayo-Lewis equation

Cumulative model

Meyer-Lowry equation Direct Numerical Integration

ݔ ൌ 1 െ ሾ 1݂

݂ ሿߙሾ 2݂

݂ ሿߚ ሾ 1݂0
െ ߜ

݂ ߜ ሿ
ሾߛ

1݂0
ሿ ሾ

2݂0
ሿ ሾ

1݂ െ ߜ ሿ

ߙ ൌ
2ݎ

ሺ1 െ 2ሻݎ
  ߚ ൌ

1ݎ
ሺ1 െ 1ሻݎ

7

 
ߜ ൌ

ሺ1 െ 2ሻݎ
ሺ2 െ 1ݎ െ 2ሻݎ

ߛ ൌ
1 െ 2ݎ1ݎ

ሺ1 െ 1ሻሺ1ݎ െ 2ሻݎ

IP
R 20

11



Copolymer 
Composition data

Instantaneous model Cumulative modelInstantaneous model

Mayo-Lewis equation

Cumulative model

Meyer-Lowry equation Direct Numerical Integration
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 EVM takes into account the error in all variables

 EVM consists of two statements:

◦ Equating the vector of measurements (e.g., f1 and F1 ) to the vector of true values (e.g., f1
* and F1

* ),

ቊ 1݂݆ ൌ 1݂݆
כ ሺ1 ൅ ߝ݂ ሻ

◦ The true values of the parameters (θ*) and variables are related with the model (e g the Mayo-Lewis

ቊ 1݂݆ 1݂݆ ሺ1 ൅ ߝ݂ 1ሻ
1݆ܨ ൌ כ1݆ܨ ሺ1 ൅ 1ሻܨߝ

◦ The true values of the parameters (θ*) and variables are related with the model (e.g., the Mayo-Lewis
model):
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Instantaneous 
model

Cumulative 
model

Evaluation

• Mayo-Lewis equation

• EVM

• Mayo-Lewis equation

• EVM

• Meyer-Lowry equation

• Direct Numerical 
Integration

• Meyer-Lowry equation

• Direct Numerical 
Integration

• Obtaining the best
possible estimates of the
parameters

• Taking into account all

• Obtaining the best
possible estimates of the
parameters

• Taking into account all
• Implementing EVM• Implementing EVM

• Taking into account all
information available

• Reasonably easy to use

• Taking into account all
information available

• Reasonably easy to use

Avoiding the problems with the instantaneous composition model.
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Increased information from the full conversion trajectory, not only very low conversions.
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 The precision of the estimation results is shown by their 95% joint confidence region (JCR).

 The smaller the JCR, the higher the reliability of the point estimates.

1.6
Direct Numerical Integration JCR

M L d l JCR
Di-n-Butyl Itaconate (DBI, M1) 
Methyl Methacrylate (MMA M )

1.45

1.5

1.55 Meyer-Lowry model JCR

Reactivity ratio estimates, reference

Reactivity ratio estimates, Meyer-Lowry model

Reactivity ratio estimates, Direct Numerical Integration

Mayo-Lewis JCR

Reactivity ratio estimates, Mayo-Lewis model

Methyl Methacrylate (MMA, M2)

1.35

1.4

r2

y , y

1.2

1.25

1.3
 Considerable overlap between JCRs, great agreement between the instantaneous and

cumulative results.
 The area of EVM JCR is smaller for cumulative model, demonstrating the advantage of

l i l ti d l

11Data set from Madruga and Fernandez-Garcia(1994)
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employing cumulative models.
 Both cumulative models provide comparable results.
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1 6
 Reactivity ratio estimates are in good

agreement with low conversion data

analysis.
1.5

1.55

1.6
Direct Numerical Integration JCR
Meyer-Lowry model JCR
Reactivity ratio estimates, reference
Reactivity ratio estimates, Meyer-Lowry model
Reactivity ratio estimates, Direct Numerical Integration
Mayo-Lewis JCR

Di-n-Butyl Itaconate (DBI, M1) 
Methyl Methacrylate (MMA, M2)

analysis.

 Considerable increase in confidence
1 35

1.4

1.45

2

Mayo-Lewis JCR
Reactivity ratio estimates, Mayo-Lewis model

in the point estimates.

 Reactivity ratio estimates are of
1.25

1.3

1.35r

 Reactivity ratio estimates are of

higher precision.

1.1

1.15

1.2

12Data set from Madruga and Fernandez-Garcia(1994)
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 Useful data of high conversion polymerization are utilized to estimate reactivity
ratios.

 More information for the analysis : More reliable reactivity ratios.

 In most cases, good agreement between the Direct Numerical Integration and the
Meyer-Lowry model.

 Direct Numerical Integration has always performed successfully (no convergence
problem) over the full conversion trajectory.
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o Potential problems with Meyer-Lowry equation:

 Restrictive underlying assumptions Restrictive underlying assumptions.

 When  f1 is one of the measured variables.

 When  r1 or  r2 approach one.

o Convergence issues for Meyer-Lowry  model have been observed:

D t t ith hi h th d t i l l Data sets with higher than moderate conversion levels.

 Significantly differing reactivity ratios.

 Considerable experimental error.p

14

IP
R 20

11



DirectDirect NumericalNumerical IntegrationIntegration::

 No convergence or other numerical issues
1.4

1.45
Direct Numerical Integration JCR

Meyer-Lowry model JCR

Reactivity ratio estimates, reference

Reactivity ratio estimates, Meyer-Lowry model

Di-n-Butyl Itaconate (DBI, M1) 
Methyl Methacrylate (MMA, M2)

 No convergence or other numerical issues.

 Uses all available information up to full
1.3

1.35

2

Reactivity ratio estimates, Direct Numerical Integration

p

conversion.

1.2

1.25
r2

Direct and General

1.1

1.15

Direct and General

Straightforward

M R li bl

15Data set from Madruga and Fernandez-Garcia(1994)
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1
reactivity ratio estimates, reference Styrene (STY M )

Data set from McManus and Penlidis (1996)
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Often ignored conversion values “hide” a lot of information!
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 Reactivity ratios obtained from copolymerization experiments are commonly used in problems dealing with 

terpolymerization reactions.

 The only justification seems to be the similarity of the kinetic mechanism used in derivation of both 

copolymerization and terpolymerization composition equation models.

There are several reasons why binary reactivity ratios should not be used for terpolymerizations:

 Conflicting reactivity ratio values for copolymerization systems in the literature.

 Inaccuracies in binary reactivity ratios can propagate in the terpolymerization composition equations.

 Between the existing sets of reactivity ratios which set of values should be used?!
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 Between the existing sets of reactivity ratios… which set of values should be used?!
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I l i i i i i Alf G ldfi d l Instantaneous terpolymerization composition equations—Alfrey-Goldfinger model: 

1ܨ 1݂ ൬ 1݂
31ݎ21ݎ

൅ 2݂
32ݎ21ݎ

൅ 3݂
23ݎ31ݎ

൰ ൬ 1݂ ൅ 2݂
12ݎ

൅ 3݂
13ݎ
൰

1

2ܨ
ൌ

൬
21 31 21 32 31 23

൰ ൬
12 13

൰

2݂ ൬ 1݂
31ݎ12ݎ

൅ 2݂
32ݎ12ݎ

൅ 3݂
32ݎ13ݎ

൰ ൬ 2݂ ൅ 1݂
21ݎ

൅ 3݂
23ݎ

൰

1ܨ 1݂ ൬ 1݂
31ݎ21ݎ

൅ 2݂
32ݎ21ݎ

൅ 3݂
23ݎ31ݎ

൰ ሺ 1݂ ൅ 2݂
12ݎ

൅ 3݂
13ݎ
ሻ

1

3ܨ
ൌ

൬31ݎ21ݎ 32ݎ21ݎ 23ݎ31ݎ
൰ 12ݎ 13ݎ

3݂ ൬ 1݂
21ݎ13ݎ

൅ 2݂
12ݎ23ݎ

൅ 3݂
23ݎ13ݎ

൰ ሺ 3݂ ൅ 1݂
31ݎ

൅ 2݂
32ݎ

ሻ

 Application of EVM on Alfrey-Goldfinger equations.

 How significantly can the quality of reactivity ratio estimates be improved? 
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 Reacti it ratios are estimated sing EVM 2
 Reactivity ratios are estimated using EVM.

 Variation in sizes of JCRs. 1.6

1.8

2

r12,r21

r13,r31

r23,r32

Acrylonitrile (M1) / Styrene (M2) / Methyl Methacrylate (M3)

 Potential reasons:

o Larger experimental error for some pairs 1
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o Larger experimental error for some pairs

o Poor experimental design (overall)

h d i i f i i i h ld b
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 The determination of reactivity ratios should be

directly based on terpolymerization data, using

adequate experimental information and

i t i t l d i

0.2

0.4

19

appropriate experimental design.

Data set from Brar and Hekmatyar (1999)
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1 8

2
r12,r21 Acrylonitrile (M1)

Styrene (M2)

1 2
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Methyl Methacrylate (M3)
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 Binary reactivity ratios fall inside and outside of the 95% JCRs.
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reactivity ratios

20Data set from Brar and Hekmatyar (1999)

 Clear inconsistency between literature values for binary reactivity ratios.

 These results make us skeptical about using binary reactivity ratios for terpolymerization systems.
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Terpolymerization of acrylonitrile (AN, M1) / styrene (Sty, M2) /2,3-dibromopropyl acrylate (DBPA, M3) 

r12 r21 r13 r31 r23 r32

Binary reactivity ratios 0.100 0.440 0.900 0.860 0.430 0.140

Ternary reactivity ratios 0.077 0.419 0.390 0.460 0.411 0.191

 Using binary reactivity ratios: No Azeotrope.
 0

 An azeotropic point is found, but ONLY after using

reactivity ratio estimates based directly on terpolymerization

data
  60

  8020

40 STY

DB
PAdata .

 System studied in literature and shown to exhibit azeotrope!

 A practical example of one of the consequences of using   20

  4060

80

TY

DB

21

binary reactivity ratios instead of ternary ones.

Data set from Saric et al (1983)

   0 0 20 40 60 80
AN
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Our main goal is to determine reliable reactivity ratios with the highest possible precision

The following points have been made:

 Cumulative copolymer composition models should be preferred over the use of

instantaneous models.

 Direct Numerical Integration is a superior approach for estimating reactivity ratios.

 If ternary system data are available, then no need to use reactivity ratios from the

corresponding binary pairs

22

corresponding binary pairs.
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Determining the best reactivity ratios is not only about finding “the best calculation method”. 

Several factors such as analytical method and/or experimental design play significant roles.

 Copolymerization studies:

 Studying cumulative triad fraction models/data

 Considering penultimate models

 Terpolymerization studies:

 D – optimal design in order to improve the quality of reactivity ratio estimates.

23

 Studying full conversion range data
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Thank you !y
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Reactivity ratio estimates for DBI/MMA

Copolymerization 

model
Conversion level r1 r2

Madruga andMadruga and 

Fernandez-

Garcia[17]

Mayo-Lewis Low 0.717 1.329

Current work Mayo-Lewis Low 0.7098 1.313

Current work Meyer-Lowry Low 0.7129 1.310

Current work
Direct Numerical 

Integration
Low 0.7156 1.310

Current work Meyer-Lowry High 0.6794 1.229

Current work
Direct Numerical 

Integration
High 0.6798 1.238

27

IP
R 20

11



1F1F1F1F1F

Comparison between two cumulative copolymer composition model performances for Sty/MMA copolymerization

Error in Xw and  Maximum conversion Meyer-Lowry point estimates Direct Numerical Integration point estimates

In X = 1% r = 0 4600 r = 0 4572

Comparison between two cumulative copolymer composition model performances for Sty/MMA copolymerization 
based on simulated composition data of different error levels

In Xw= 1% 

In       = 5%
Xw ≤ 55%

r1= 0.4600

r2= 0.4317

r1= 0.4572

r2= 0.4389

In Xw= 0.5% 

In = 2%
Xw ≤ 80%

r1= 0.4409

r2= 0.4345

r1= 0.4408

r2= 0.4347

 
1F

 
1F

In Xw= 0.1% 

In       = 0.5%
Xw ≤ 90%

r1= 0.4453

r2= 0.4313

r1= 0.4452

r2= 0.4311

In Xw= 0% 

In = 0%
Xw ≤ 90%

r1= 0.4317

r2= 0.4218

r1= 0.4317

r2= 0.4218

 
1F

 
1F
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Styrene (STY, M1) / Ethyl Acrylate (EA, M2)

Cumulative models would provide higher 
quality parameter estimates (smaller JCRs).

0.15

0.155

0.16
Meyer-Lowry JCR
reactivity ratio estimates, Meyer-Lowry
Direct Numerical Integration JCR
reactivity ratio estimates, Direct Numerical Integration
reactivity ratio estimates, McManus and Penlidis (1996)

Feed 

composition

Copolymer

composition

Conversion 

(wt%)

(fo)Sty FSty Xw

0 0788 0 296 1 2 0 13

0.135

0.14

0.145

r2

y , ( )
reactivity ratio estimates, Mayo-Lewis
Mayo-Lewis JCR

0.0788 0.296 1.2

0.0788 0.308 1.27

0.0788 0.303 1.16

0.0788 0.286 1.04

0 7193 0 716 1 49

Not much 
information ! 0.115

0.12

0.125

0.13

0.7193 0.716 1.49

0.7193 0.736 1.48

0.7193 0.736 1.40

0.7193 0.732 1.46 Since changes in the values of conversion are minimal, the 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0.11

r1

 

information content of the cumulative models is not more 
than what the instantaneous model knows! 

Data set from McManus and Penlidis (1996) 29
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Copolymerization 
Conversion level r r

Low conversion data, Maximum of conversion: 4.75%

High conversion data, Maximum of conversion: 71.4%

0.19

0.2

0.21
reactivity ratio estimates, McManus and Penlidis (1996)
Mayo-Lewis JCR
reactivity ratio estimates, Mayo-Lewis
Meyer-Lowry JCR
reactivity ratio estimates, Meyer-Lowry
Direct Numerical Integration JCR

model
Conversion level r1 r2

McManus and 

Penlidis[15]
Mayo-Lewis Low 0.717 0.128

Current work Mayo-Lewis Low 0 717 0 1282 0 15

0.16

0.17

0.18

r2

g
reactivity ratio estimates, Direct Numerical Integration

Current work Mayo-Lewis Low 0.717 0.1282

Current work Meyer-Lowry Low 0.7166 0.1257

Current work
Direct Numerical 

Integration
Low 0.7127 0.1256 0.12

0.13

0.14

0.15

Current work Meyer-Lowry Xw ≤ 60% 0.9215 0.1429

Current work
Direct Numerical 

Integration
Xw ≤ 60% 0.9238 0.1438

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0.11

r1

 

Point estimates for the Meyer-Lowry model and direct
i l i t ti ith d t i d t hift d

Current work
Direct Numerical 

Integration
High 0.9318 0.1403

numerical integration with moderate conversion data shifted
considerably comparing to the Mayo-Lewis model point
estimates with low conversion data !

Data set from McManus and Penlidis (1996) 30
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0.16  
reactiv ity  ratio estimates, McManus and Penlidis (1996)

0.145

0.15

0.155

y , ( )
Mayo-Lewis JCR, low conversion and high azeotropic conversion data
reactiv ity  ratio estimates, Mayo-Lewis, low conversion and high azeotropic conversion data
Mayo-Lewis JCR, low coversion data only
reactiv ity  ratio estimates, Mayo-Lewis JCR, low conversion data only

0 13

0.135

0.14

r2

0.12

0.125

0.13

A demonstration of the fact that combining high conversion information at azeotropic conditions

0.5 0.6 0.7 0.8 0.9 1 1.1
0.115

r1

 

with low conversion data is much preferable, as it will increase the reliability/quality of the
reactivity ratio estimates.

Data set from McManus and Penlidis (1996) 31
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The reactivity ratios obtained from Mayo-Lewis model (low conversion data) and the Direct Numerical Integration 
model (high conversion data) were used to simulate instantaneous triad fractionsmodel (high conversion data) were used to simulate instantaneous triad fractions.

0.9

1

Data set from McManus and Penlidis (1996)

Styrene (STY, M1) / Ethyl Acrylate (EA, M2)

0.6

0.7

0.8

ac
tio

ns

A111-Mayo-Lewis model

A111-Direct Numerical Integration model

0.2

0.3

0.4

0.5

T
ri

ad
 fr

a A111 Direct Numerical Integration model

A211112-Mayo-Lewis model

A211112-Direct Numerical Integration model

0

0.1

0 0.2 0.4 0.6 0.8 1

f1

A212-Mayo-Lewis model

A212-Direct Numerical Integration model

The difference between the performance of these two models shows the effect high conversion values can have on 
the outcome of the analysis.

f1
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 Reactivity ratios obtained from copolymerization experiments are commonly used in problems dealing with 

terpolymerization reactions.

 The only justification seems to be the similarity of the kinetic terminal unit mechanism used in derivation of 

both copolymerization and terpolymerization composition equation models.

There are several reasons why binary reactivity ratios should not be used for terpolymerizations:

 Conflicting reactivity ratio values for copolymerization systems in the literature.

 Inaccuracies in binary reactivity ratios can propagate in the terpolymerization composition equations.

 Between the existing sets of reactivity ratios… which set of values should be used?!

 The underlying assumption resulting in the analogy between ternary and binary systems might not be always true.

 The presence of the third monomer has been completely ignored.

33
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Terpolymerization of Acrylonitrile (M1)  /  Styrene (M2)  /   Methyl Methacrylate (M3)

Cumulative terpolymer composition versus conversion using binary and 
ternary reactivity ratios with initial feed composition 0.42/0.36/0.22

0.6

1 4
1.6
1.8

2

s

r12,r21

r13,r31

r23 r32

ternary vs. binary reactivity ratios
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bi M10 4
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om binary-M1

ternary-M2

binary-M2

0
0.2
0.4

0 0.2 0.4 0.6 0.8
reactivity ratios

0

0.1

C
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e ternary-M3

binary-M3Clear difference between the  
cumulative composition 

trajectories ! 0
0 0.2 0.4 0.6 0.8 1

Conversion

trajectories !
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 Azeotropic point is a feed composition at which the polymerization does not exhibit composition driftp p p p y p

A i t l i l l ti f th lti t iti d l

݀ሾ݉1ሿ
ሾ݉1ሿ

ݐ݀ ൌ
݀ሾ݉2ሿ
ሾ݉2ሿ

ݐ݀ ൌ  ڮ

 Arrive at a general numerical solution of the multicomponent composition model
 the Alfrey-Goldfinger equations were solved numerically at azeotropic conditions (solving a set of nonlinear 

algebraic equations using Matlab)
 During the numerical testing phase with literature reports, 
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