Micronization of Polymer in an Extrusion Process using Supercritical Carbon Dioxide

Nowrin R. Abedin Candidate for MASc Chemical Engineering

Agenda

- Introduction
- Research Objective
 Literature Review
- - Supercritical CO₂
 - Supercritical Particle Formation Methodologies
 - Extrusion process

Experimental

- Materials and Equipment 0
- Preliminary Experiments 0
- Characterization

• Result and Discussion

- Particle Size
- Particle Size Distribution
- Particle Morphology
 Future Work
- Conclusion
- References

Introduction

- Used in powder industries such as paints, toners and drugs
- Common production methods: milling, grinding, spray drying or re-crystallization from solvents
- Drawbacks
 - High-temperature and high mechanical stress: not suitable for thermolabile compounds
 - Not sufficient control on the powder characteristics: particle size variability, broad size distribution
 - Uses liquid organic solvent precipitation
 - Product pollution
 - Waste stream generation and emissions of VOCs

- Solvent recovery
- Increased cost

Research Objective

- Feasibility of producing micron sized polymeric particles via the extrusion process using supercritical CO₂
 - Design Criteria: Attain minimal particle size and narrow particle size distribution
- Investigate the effect of processing parameters on particle properties:
 - Particle size
 - Particle Size Distribution
 - Morphology

Literature Review: Supercritical Fluids

- Pressure and temperature above critical value
- It has gas-like viscosity and liquid-like density
- Thermodynamically defined by the conditions

$$\left(\frac{\partial P}{\partial V}\right)_T = 0$$
 and $\left(\frac{\partial^2 P}{\partial^2 V}\right)_T$

• Density can be tuned easily with a small change in pressure

=0

Table 1: List of Some Supercritical Fluids that are viable VOC replacements:

Substances	Critical Temperature (K)	Critical Pressure (MPa)	
Carbon Dioxide	304.1	7.38	
Dimethyl Ether	400.0	5.24	
Acetone	508.1	4.70	
Water	647.3	22.1	

Literature Review: Supercritical CO₂

- The polymer industry expels over 20 million tons of volatile organic compounds (VOCs) each year
- A promising alternative to VOCs
- **Benefits:**
 - Non-toxic and chemically inert
 - Inexpensive
 - Easily attainable supercritical conditions
 - High purity products
 - CO₂ is gaseous at ambient conditions, which simplifies the problem of solvent residues
 - Dissolved CO₂ causes a considerable reduction in viscosity due to increase in free volume of the polymer
 - Allows processing thermolabile compounds
 - Less energy is consumed during the process
 - Alters physical properties of the polymers: viscosity, diffusivity

Literature Review: Supercritical Particle Formation Methodologies

Extrusion Process

Particles production in an Extrusion Process:

- SCF or SC-CO₂ is first dissolved in the polymer matrix
- Dissolved CO₂ increases free volume and reduces viscosity of the polymer
- Passed through a narrow die space and out through a micron-size nozzle hole
 - Reduction of gas solubility
 - Nucleation of Bubbles
- Vigorous expansion of the dissolved gas breaks up the polymer melt
- Expansion of Gas-Saturation with Excess Gas (EGSEG)

Why use Extrusion Process?

- Used in industry since 1930's
- Primary method of polymer production
 - Potentially eliminate: milling, grinding, RESS, GAS and SAS
- > Particle shape, size, and size distribution can be controlled
 - Processing parameters
 - Nozzle size and geometry
- Permits operation at lower temperature
 - Allow micronization of thermolabile compounds

Material

- Polyethylene Wax (PE wax)
 - Low molecular weight PE
 - Synthetic wax produced by polymerization of high density low MW ethylene

CHARACTERISTICSPOLYETHYLENE WAXMelting point (°C)95-100Molecular Weight2,000-4,000

0.93-0.94

White

 Table 2: Characteristic Properties of PE Wax

• Good electrical, remoulding, resistant properties

Density

Colour

• Micronized PE wax: Inks, coating and personal care products

Supercritical CO₂

99.997% product purity with an initial pressure of about 1900 psi (~13.1 MPa)

Experimental Setup

Collection Chamber

- Manufactured in-house
- Material: Lexan (clear polycarbonate sheet) of ¹/₂" thickness

Experimental: Characterization

- Optical Microscope
 - Estimate particle size
 - Generate particle size distribution
- Scanning Electron Microscopy
 - Analyze particle size and morphology
- Differential Scanning Calorimeter
 Measure thermal transition points
 - Measure thermal transition points
- Capillary Rheometer
 - Measures shear viscosity of polymer

Experimental Design

- Preliminary Experiments:
 - To establish a stable micronization process
 - To analyse the effect on pressure

Effect of processing variables

- Polymer Feed Rate (13 26 g/min)
- CO₂ Feed Rate
- Nozzle Temperature
- (25 55 ml/min) (10-200 °C)
- Effect on characteristics of produced particles
 - Particle Size
 - Particle Size Distribution (PSD)
 - Morphology

Results and Discussion

- Successful production of particles
- Particles sized in the range of 0.01 to 190 μm
- Best Results:

Figure 3: SEM Images of Particles Produced at CO₂ Feed Rate of 25 ml/min, Screw Speed of 50 rpm, and Nozzle Temperature at 200°C: (a) Polymer feed rate = 13 g/min, and (b) Polymer feed rate = 26 g/min

Results and Discussion: Particle Size

Effect of Nozzle Temperature:

• Nozzle temperature 1 causes an 1 in mean particle diameter

Table 3: Mean Particle Diameter at Different Polymer Feed Rates and Nozzle Temperatures (CO₂ feed rate =25 ml/min, screw speed= 50 rpm)

	Polymer Feed Rate (g/min)	Nozzle Temperature (^o C)	Mean Diameter (µm)	Sauter Mean Diameter (µm)	Volume Mean Diameter (µm)	
	13	140	5.41	17.49	28.95	
		160	5.91	10.97	13.73	
		180	6.33	11.59	13.21 Unre	liable
		200	6.66	26.56	35.48	
	26	140	5.46	18.86	26.18	
		160	5.58	12.27	16.64	
1111		180	9.60	16.72	19.11	
		200	9.73	19.31	24.46	18
1111						10

Results and Discussion: Particle Size

Figure 4: SEM Images of Particle Produced at Different Polymer Feed Rate (CO₂ feed rate = 25 ml/min, screw speed = 50 rpm, nozzle temperature = 160°C): (a) 13 g/min and (b) 26 g/min

Results and Discussion: Particle Size

Table 4: Mean Particle Diameter at Different CO₂ Feed Rates for a Constant Polymer Feed Rate of 52 g/min (Screw Speed = 55 rpm and Nozzle Temperature = 140^oC)

CO ₂ Feed Rate (ml/min)	Mean Diameter (µm)	Sauter Mean Diameter (µm)	Volume Mean Diameter (µm)	
25	8.45	19.49	34.80	
35	10.31	31.82	45.14 Un	reliable
45	20.50	77.45	97.66	
55	9.68	20.24	24.85	18
				10

Particles Size Distribution (PSD)

- Based on optical microscopic measurements performed
- 150 particles divided into 26 size classes
- Particle sizes against the % frequency of occurrence of particles in a given size class
- The distributions were normalized

Effect of Nozzle Temperature:

- The PSD broadens as nozzle temperature \uparrow at high PFR
- The position and number of modal peaks changed for high PFR

ml/min, Screw Speed = 50 rpm): (a) 13 g/min, and (b) 26 g/min

• Effect of Polymer Feed Rate (cont'd):

• At high temperature, differ in both size and shape

Figure 8: Normalized Particle Size Distribution at Different CO₂ Feed Rate (Polymer Feed Rate = 52 g/min, Screw Speed = 50 rpm, Nozzle Temperature = 140°C)

Results and Discussion: Morphology

• Effect of Nozzle Temperature:

- Solidification time defines the shape of particles
- \uparrow in temperature \uparrow the solidification time
- More spherically shaped particles formed
- Less fibres and least agglomeration

Figure 9: SEM Images of Particle Produced at Different Nozzle Temperatures at a Polymer Feed Rate of 26 g/min (CO₂ Feed Rate = 25 ml/min, Screw Speed = 50 rpm): (a) 160°C and (b) 200°C

Results and Discussion: Morphology

• Effect of Polymer Feed Rate:

Agglomeration with in polymer feed rate
 More fibrous and misshapen product
 Caused by the large stretching effect experienced at high PFR
 High shear experienced
 (b)

Figure 10: SEM Images of Particles Produced at Different Polymer Feed Rate at Nozzle Temperatures 180°C (CO₂ Feed Rate = 25 ml/min, Screw Speed = 50 rpm): (a) 13 g/min and (b) 26 g/min

Results and Discussion: Morphology

• Effect of CO₂ Feed Rate:

- More deformed particles at higher feed rates
- Agglomeration \uparrow with an \uparrow in CO₂ feed rate

Figure11: SEM Images of Particles Produced at Different CO₂ Feed Rate at 500X Magnification (Polymer Feed Rate= 55 g/min, Screw Speed = 50 rpm, Nozzle Temperature = 140^oC): (a) 35 ml/min and (b) 55 ml/min

Future Work

- Statistical analysis:
 - Develop mathematical models to quantify the effect of variables
 - Optimization
- Investigate the effects of
 - Die size and geometry
 - Processing temperature
 - Molecular weight
- Feasibility of producing particles of other polymers

Conclusion

Intent:

- Micronization of polymer in a extrusion process using supercritical CO₂
- Study effect of process variables
 - Particle size
 - Particle size distribution
 - Morphology
- Benefits:
- Particle properties can be controlled
- Reduce emission of VOC and minimize waste stream generation
- Extrusion micronization can replace secondary micronization processes:
 - grinding
 - milling
 - RESS
 - SAS etc.

References

- [1] Areerat S, Funami E, Hayata Y, Nakagawa D, Ohshima M. Measurement and prediction of diffusion coefficients of supercritical CO2 in molten polymers. Polym Eng Sci 2004;44:1915-24.
- [2] Ash M., Ash I. Handbook of Green Chemicals. Endicott, NY: Synapse Information Resources Inc., 2004.
- [3] Breitenbach J. Melt extrusion: from process to drug delivery technology. European Journal of Pharmaceutics and Biopharmaceutics : Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 2002;54:107-17.
- [4] Fages J, Lochard H, Letourneau J-, Sauceau M, Rodier E. Particle generation for pharmaceutical applications using supercritical fluid technology. Powder Technol 2004;141:219-26.
- [5] Flick E.W. Handbook of Adhesive Raw Materials. Park Ridge, NJ: Noyes Publication, 1989.
- [6] Freund M., Mozes G. Paraffin Products: Properties, Technologies, Applications. NY: Elsevier Science Publishing Company, Inc., 1982.
- [7] Jung J, Perrut M. Particle design using supercritical fluids: Literature and patent survey. Journal of Supercritical Fluids 2001;20:179-219.
- [8] Kemmere MF, Meyer T editors. Supercritical carbon dioxide in polymer reaction engineering. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.
- [9] Knez Z, Weidner E. Particles formation and particle design using supercritical fluids. Current Opinion in Solid State and Materials Science 2003;7:353-61.
- [10] Kordikowski A, Shekunov T, York P. Polymorph control of sulfathiazole in supercritical CO2. Pharm Res 2001;18:682-8.
- [11] Mansour A, Chigier N. Air-blast atomization of non-Newtonian liquids. J Non Newtonian Fluid Mech 1995;58:161-94.
- [12] Nalawade SP, Picchioni F, Janssen LPBM. Batch production of micron size particles from poly(ethylene glycol) using supercritical CO2 as a processing solvent. Chemical Engineering Science 2007;62:1712-20.
- [13] Nalawade SP, Picchioni F, Janssen LPBM, Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications. Progress in Polymer Science (Oxford) 2006;31:19-43.
- [14] Pasquali I, Bettini R, Giordano F. Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics. European Journal of Pharmaceutical Sciences 2006;27:299-310.
- [15] Rehman M, Kippax P, York P. Particle engineering for improved dispersion in dry powder inhalers. Pharmaceutical Technology Europe 2003;15:34,37+39.
- [16] Repka MA. Hot-melt extrusion. American Pharmaceutical Review 2009;12:18-27.

- [17] Reverchon E. Supercritical-assisted atomization to produce micro- and/or nanoparticles of controlled size and distribution. Industrial and Engineering Chemistry Research 2002;41:2405-11.
- [18] Reverchon E, Della Porta G. Supercritical fluids-assisted micronization techniques. Low-impact routes for particle production. Pure and Applied Chemistry 2001;73:1293-7.
- Resato D.V., Rosato D.V., Rosato M.V. Plastic Product Material and Process Selection Handbook. Kidlington, Oxford, UK: Elsevier Ltd., 2004.
- [20] Yoganathan RB, Mammucari R, Foster NR. Dense gas processing of polymers. Polymer Reviews 2010;50:144-77.

Acknowledgements

Prof. Costas Tzoganakis

Shuihan Zhu

Mercy Bulsary

Thank You for Listening

Literature Review: Supercritical Fluids

Table 2: List of Some Supercritical Fluids that are viable VOC replacements:

Substances	Critical Temperature (K)	Critical Pressure (MPa)	
Carbon Dioxide	304.1	7.38	
Dimethyl Ether	400.0	5.24	
Acetone	508.1	4.70	
Water	647.3	22.1	

Supercritical Water:

- Very effective reaction medium for oxidation reaction
- Drawbacks: Corrosion and investment costs (due to extreme operation conditions)
- Used for waste water treatment in chemical industry

Ionic liquids (room-temperature molten organic salts):

- Salt cost is substantial
- Separation of ionic liquid from process stream is a concern

Literature Review: Supercritical Fluids

SCF Property Liquid Gas 0.5 - 110-3 - 10-2 Density (g/cm^3) 1 10-3 Diffusivity (cm²/s) 10-6 10-1 $10^{-3} - 10^{-2}$ 10-5 Viscosity (Pa-s) 10-6

Optical Microscope

- Quadropole moment and Lewis acidity of CO₂ contributes to it solubility in polymer
- Processing temperature and pressure.
 - At elevated temperature and pressure, the quadropole moment of supercritical CO_2 is disrupted by the thermal energy leading to a nonpolar behaviour of CO_2 , allowing dissolution of a non-polar solute, such as polymer, into polar supercritical CO_2 .
 - However, it is to be noted that the critical dissolution pressure and temperature rises with increasing molecular weight, i.e. larger molecules show limited solubility in CO₂.
- Polymers with flexible back bones and high free volume

- hence low glass transition temperature molecules show higher solubility in CO_2
- The quantity of CO₂ dissolved in a polymer can also be constituted to the weak intermolecular interactions between CO₂ and functional groups, such as carbonyl group, ether group, aromatic group etc., available in a polymer.

Various theoretical models such as lattice fluid theory, off-lattice theory, cubic equation of state, are readily used to estimate CO_2 solubility in polymers. Apart from theoretical models, several experimental methods, for example phase separation method, gravimetric method, pressure decay method, are employed for solubility measurement